Quantum computing might be closer than we thought, thanks to a series of newly developed scientific methods. Furthermore, a new implementation of Shor’s algorithm increases the urgency of getting Bitcoin ready for the advent of quantum computing.
Also read: NIST Starts Developing Quantum-Resistant Cryptography Standards.
Read this introductory list of contemporary machine learning algorithms of importance that every engineer should understand.
By James Le, New Story Charity.
It is no doubt that the sub-field of machine learning / artificial intelligence has increasingly gained more popularity in the past couple of years. As Big Data is the hottest trend in the tech industry at the moment, machine learning is incredibly powerful to make predictions or calculated suggestions based on large amounts of data. Some of the most common examples of machine learning are Netflix’s algorithms to make movie suggestions based on movies you have watched in the past or Amazon’s algorithms that recommend books based on books you have bought before.
It is not often that a scientist walks the red carpet at a Silicon Valley party and has Morgan Freeman award them millions of dollars while Alicia Keys performs on stage and other A-listers rub shoulders with NASA astronauts.
But the guest list for the Breakthrough prize ceremony is intended to make it an occasion. At the fifth such event in California last night, a handful of the world’s top researchers left their labs behind for the limelight. Honoured for their work on black holes and string theory, DNA repair and rare diseases, and unfathomable modifications to Schrödinger’s equation, they went home to newly recharged bank accounts.
Founded by Yuri Milner, the billionaire tech investor, with Facebook’s Mark Zuckerberg and Google’s Sergey Brin, the Breakthrough prizes aim to right a perceived wrong: that scientists and engineers are not appreciated by society. With lucrative prizes and a lavish party dubbed “the Oscars of science”, Milner and his companions want to elevate scientists to rock star status.
The goal of roboticists has long been to make A.I. as efficient as the human brain, and researchers at the Massachusetts Institute of Technology just brought them one step closer.
In a recent paper, published in the journal Biology, scientists were able to successfully train a neural network to recognize faces at different angles by feeding it a set of different orientations for several face templates. Although this only initially gave the neural network the ability to roughly reach invariance — the ability to process data regardless of form — over time, the network taught itself to achieve full “mirror symmetry. Through mathematical algorithms, the neural network was able to mimic the human brain’s ability to understand objects are the same despite orientation or rotation.
What if a simple algorithm were all it took to program tomorrow’s artificial intelligence to think like humans?
According to a paper published in the journal Frontiers in Systems Neuroscience, it may be that easy — or difficult. Are you a glass-half-full or half-empty kind of person?
Researchers behind the theory presented experimental evidence for the Theory of Connectivity — the theory that all of the brains processes are interconnected (massive oversimplification alert) — “that a simple mathematical logic underlies brain computation.” Simply put, an algorithm could map how the brain processes information. The painfully-long research paper describes groups of similar neurons forming multiple attachments meant to handle basic ideas or information. These groupings form what researchers call “functional connectivity motifs” (FCM), which are responsible for every possible combination of ideas.
When you see a photo of a dog bounding across the lawn, it’s pretty easy for us humans to imagine how the following moments played out. Well, scientists at MIT have just trained machines to do the same thing, with artificial intelligence software that can take a single image and use it to to create a short video of the seconds that followed. The technology is still bare-bones, but could one day make for smarter self-driving cars that are better prepared for the unexpected, among other applications.
The software uses a deep-learning algorithm that was trained on two million unlabeled videos amounting to a year’s worth of screen time. It actually consists of two separate neural networks that compete with one another. The first has been taught to separate the foreground and the background and to identify the object in the image, which allows the model to then determine what is moving and what isn’t.
According to the scientists, this approach improves on other computer vision technologies under development that can also create video of the future. These involve taking the information available in existing videos and stretching them out with computer-generated vision, by building each frame one at a time. The new software is claimed to be more accurate, by producing up to 32 frames per second and building out entire scenes in one go.
We took the technology out of the studio and into a car – making Holoportation truly mobile. To accomplish this, we reduced the bandwidth requirements by 97%, while still maintaining quality. This new mobile Holoportation system greatly increases the potential applications of real-time 3D capture and transmission.
Our brains have a basic algorithm that enables us to not just recognize a traditional Thanksgiving meal, but the intelligence to ponder the broader implications of a bountiful harvest as well as good family and friends.
“A relatively simple mathematical logic underlies our complex brain computations,” said Dr. Joe Z. Tsien, neuroscientist at the Medical College of Georgia at Augusta University, co-director of the Augusta University Brain and Behavior Discovery Institute and Georgia Research Alliance Eminent Scholar in Cognitive and Systems Neurobiology.
Machines lace almost all social, political cultural and economic issues currently being discussed. Why, you ask? Clearly, because we live in a world that has all its modern economies and demographic trends pivoting around machines and factories at all scales.
We have reached the stage in the evolution of our civilization where we cannot fathom a day without the presence of machines or automated processes. Machines are not only used in sectors of manufacturing or agriculture but also in basic applications like healthcare, electronics and other areas of research. Although, machines of varying types had entered the industrial landscape long ago, technologies like nanotechnology, the Internet of Things, Big Data have altered the scenario in an unprecedented manner.
The fusion of nanotechnology with conventional mechanical concepts gives rise to the perception of ‘molecular machines’. Foreseen to be a stepping stone into nano-sized industrial revolution, these microscopic machines are molecules designed with movable parts that behave in a way that our regular machines operate in. A nano-scale motor that spins in a given direction in presence of directed heat and light would be an example of a molecular machine.