Toggle light / dark theme

We may not be the only beings in the universe who use artificial intelligence. That’s according to some astronomers who say that an intelligent civilization anywhere in the cosmos would develop this tool naturally over the course of their cultural evolution.

After 13.8 billion years of existence, life has likely sprung up countless times throughout the cosmos. According to the Drake Equation, which calculates the probability of an existing, communicating civilization, there are currently an estimated 12,500 such intelligent alien societies in the Milky Way Galaxy alone. And if there are aliens who think in a way that we do, and created cultures that developed technology like us, then they probably invented a form of artificial intelligence, too, scientists say.

Assuming AI has been an integral part of intelligent societies for thousands or even millions of years, experts are increasingly considering the possibility that artificial intelligence may have grown to proportions we can scarcely imagine on Earth. Life in the universe may not only be biological, they say. AI machine-based life may dominate many extraterrestrial civilizations, according to a burgeoning theory among astrobiologists.

When laser energy is deposited in a target material, numerous complex processes take place at length and time scales that are too small to visually observe. To study and ultimately fine-tune such processes, researchers look to computer modeling. However, these simulations rely on accurate equation of state (EOS) models to describe the thermodynamic properties—such as pressure, density and temperature—of a target material under the extreme conditions generated by the intense heat of a laser pulse.

One process that is insufficiently addressed in current EOS models is ablation, where the irradiation from the laser beam removes solid material from the target either by means of vaporization or plasma formation (the fourth state of matter). It is this mechanism that launches a shock into the material, ultimately resulting in the high densities required for high pressure experiments such as (ICF).

To better understand laser–matter interactions with regard to ablation, researchers from Lawrence Livermore National Laboratory (LLNL), the University of California, San Diego (UCSD), SLAC National Accelerator Laboratory and other collaborating institutions conducted a study that represents the first example of using X-ray diffraction to make direct time-resolved measurements of an aluminum sample’s ablation depth. The research appears in Applied Physics Letters.

The V-score benchmarks classical and quantum algorithms in solving the many-body problem. The study highlights quantum computings potential for tackling complex material systems while providing an open-access framework for future research innovations.

Scientists aspire to use quantum computing to explore complex phenomena that have been difficult for current computers to analyze, such as the characteristics of novel and exotic materials. However, despite the excitement surrounding each announcement of “quantum supremacy,” it remains challenging to pinpoint when quantum computers and algorithms will offer a clear, practical advantage over classical systems.

A large collaboration led by Giuseppe Carleo, a physicist at the Swiss Federal Institute for Technology (EPFL) in Lausane and the member of the National Center for Competence in Research NCCR MARVEL, has now introduced a method to compare the performance of different algorithms, both classical and quantum ones, when simulating complex phenomena in condensed matter physics. The new benchmark, called V-score, is described in an article just published in Science.

Dr. Seung-Woo Lee and his team at the Quantum Technology Research Center at the Korea Institute of Science and Technology (KIST) have developed a world-class quantum error correction technology and designed a fault-tolerant quantum computing architecture based on it.


- Quantum error correction is a key technology in the implementation and practicalization of quantum computing.

- Groundbreaking quantum error correction technology contributes to the development of K-quantum computing deployments.

Solving the problem of error is essential for the practical application of quantum computing technologies that surpass the performance of digital computers. Information input into a qubit, the smallest unit of quantum computation, is quickly lost and error-prone. No matter how much we mitigate errors and improve the accuracy of qubit control, as the system size and computation scale increase, errors accumulate and algorithms become impossible to perform. Quantum error correction is a way to solve this problem. As the race for global supremacy in quantum technology intensifies, most major companies and research groups leading the development of quantum computing are now focusing on developing quantum error correction technology.

Oil and gas extraction in places like Texas’ Permian Basin leads to several waste products, including significant amounts of wastewater and flares firing into the sky. Texas Engineer Vaibhav Bahadur is researching how those byproducts, which are harmful to the environment, could be repurposed to serve as key elements in the creation of “green” hydrogen.

Bahadur, an associate professor in the Walker Department of Mechanical Engineering, recently published a new paper in the journal Desalination about a new way to potentially produce green hydrogen. It involves using the energy wasted via gas flaring to power reverse osmosis, a common, low-energy technique used for municipal water treatment. Hydrogen production requires pristine water, and this process satisfies that need by removing salts and other elements from the equation.

Learn more about green hydrogen in the Q&A with Bahadur below, as well as his research, next steps and its broader implications.

String theory aims to explain all fundamental forces and particles in the universe—essentially, how the world operates on the smallest scales. Though it has not yet been experimentally verified, work in string theory has already led to significant advancements in mathematics and theoretical physics.

Dr. Ksenia Fedosova, a researcher at the Mathematics Münster Cluster of Excellence at the University of Münster has, along with two co-authors, added a new piece to this puzzle: They have proven a conjecture related to so-called 4-graviton scattering, which physicists have proposed for certain equations. The results have been published in the Proceedings of the National Academy of Sciences.

Gravitons are hypothetical particles responsible for gravity. “The 4-graviton scattering can be thought of as two gravitons moving freely through space until they interact in a ‘black box’ and then emerge as two gravitons,” explains Fedosova, providing the physical background for her work. “The goal is to determine the probability of what happens in this black box.”

The rise of quantum computing is more than a technological advancement; it marks a profound shift in the world of cybersecurity, especially when considering the actions of state-sponsored cyber actors. Quantum technology has the power to upend the very foundations of digital security, promising to dismantle current encryption standards, enhance offensive capabilities, and recalibrate the balance of cyber power globally. As leading nations like China, Russia, and others intensify their investments in quantum research, the potential repercussions for cybersecurity and international relations are becoming alarmingly clear.

Imagine a world where encrypted communications, long thought to be secure, could be broken in mere seconds. Today, encryption standards such as RSA or ECC rely on complex mathematical problems that would take traditional computers thousands of years to solve. Quantum computing, however, changes this equation. Using quantum algorithms like Shor’s, a sufficiently powerful quantum computer could factorize these massive numbers, effectively rendering these encryption methods obsolete.

This capability could give state actors the ability to decrypt communications, access sensitive governmental data, and breach secure systems in real time, transforming cyber espionage. Instead of months spent infiltrating networks and monitoring data flow, quantum computing could provide immediate access to critical information, bypassing traditional defenses entirely.

However, Hassabis’ true breakthrough came just a month ago, when he and two colleagues from DeepMind won the Nobel Prize in Chemistry for their development of AlphaFold, an AI tool capable of predicting the structure of the 200 million known proteins. This achievement would have been nearly impossible without AI, and solidifies Hassabis’ belief that AI is set to become one of the main drivers of scientific progress in the coming years.

Hassabis — the son of a Greek-Cypriot father and a Singaporean mother — reflects on the early days of DeepMind, which he founded in 2010, when “nobody was working on AI.” Over time, machine learning techniques such as deep learning and reinforcement learning began to take shape, providing AI with a significant boost. In 2017, Google scientists introduced a new algorithmic architecture that enabled the development of AGI. “It took several years to figure out how to utilize that type of algorithm and then integrate it in hybrid systems like AlphaFold, which includes other components,” he explains.

“During our first years, we were working in a theoretical space. We focused on games and video games, which were never an end in themselves. It gave us a controlled environment in which to operate and ask questions. But my passion has always been to use AI to accelerate scientific understanding. We managed to scale up to solving a real-world problem, such as protein folding,” recalls the engineer and neuroscientist.

In an era where AI and data are driving the scientific revolution, quantum computing technology is emerging as another game-changer in the development of new drugs and new materials.

Dr. Hyang-Tag Lim’s research team at the Center for Quantum Technology at the Korea Institute of Science and Technology (KIST) has implemented a quantum computing algorithm that can estimate interatomic bond distances and ground state energies with chemical accuracy using fewer resources than conventional methods, and has succeeded in performing accurate calculations without the need for additional quantum error mitigation techniques.

The work is published in the journal Science Advances.