Toggle light / dark theme

“Cannabis vapes are newly regulated products in Canada, so we don’t yet have much scientific data about them,” said Dr. Andrew Waye. “This is an opportunity for us to look at some of the questions concerning the risks and unknowns of cannabis vapes.”


Do vapes pose health risks on par with the very tobacco and cannabis products it’s using to safeguard against? This is what a recent study presented at the ACS (American Chemical Society) Spring 2024 meeting hopes to address as a team of researchers investigated the potential health risks that vaping devices could pose, specifically pertaining to the vaping liquids that possess toxic metal nanoparticles, with both regulated and unregulated vaping devices. This study holds the potential to help researchers, medical professionals, and the public better understand the long-term health risks by vaping, which until now have been deemed a “safer” alternative to smoking cigarettes or cannabis.

Biosensing technology developed by engineers has made it possible to create gene test strips that rival conventional lab-based tests in quality. When the pandemic started, people who felt unwell had to join long queues for lab-based PCR tests and then wait for two days to learn if they had the COVID-19 virus or not.

In addition to significant inconvenience, a major drawback was the substantial and expensive logistics needed for such laboratory tests, while testing delays increased the risk of disease spread.

Now a team of bio]medical engineers at UNSW Sydney have developed a new technology offering test strips which are just as accurate as the lab-based detection. And according to research published today in Nature Communications, it’s not just public health that the technology may benefit.

A novel approach in the field of Alzheimer’s research is emerging that could potentially transform how we tackle this debilitating disease. Recent studies have revealed a paradigm shift in understanding Alzheimer’s pathology, emphasizing the importance of targeting the early-stage aggregation of the pathogenic amyloid beta (A-beta) protein, specifically focusing on its soluble oligomeric form.

Over the past three decades, conventional treatments for Alzheimer’s have largely been ineffective, primarily due to their focus on combating the fibrillar form of A-beta. However, emerging research suggests that it is the soluble oligomeric form of A-beta that poses the greatest threat to neuronal health, leading to cognitive decline and neurotoxicity.

A recent breakthrough in Alzheimer’s treatment has come from the development of an antibody capable of recognizing both oligomeric and fibrillar forms of A-beta, offering newfound hope to the field. This innovative therapy has demonstrated promising results in delaying disease progression by up to 36% in individuals with early-to-mild cognitive impairment.

Human brains preserve in diverse environments for at least 12 000 years—new research in Proceedings B this week: https://royalsocietypublishing.org/doi/10.1098/rspb.2023.

Soft tissue preservation in the geological record is relatively rare, and when an archaeologist digs a human skull out of the…


The brain is thought to be among the first human organs to decompose after death. The discovery of brains preserved in the archaeological record is therefore regarded as unusual. Although mechanisms such as dehydration, freezing, saponification, and tanning are known to allow for the preservation of the brain on short time scales in association with other soft tissues (≲4000 years), discoveries of older brains, especially in the absence of other soft tissues, are rare. Here, we collated an archive of more than 4,400 human brains preserved in the archaeological record across approximately 12 000 years, more than 1,300 of which constitute the only soft tissue preserved amongst otherwise skeletonized remains. We found that brains of this type persist on time scales exceeding those preserved by other means, which suggests an unknown mechanism may be responsible for preservation particular to the central nervous system. The untapped archive of preserved ancient brains represents an opportunity for bioarchaeological studies of human evolution, health and disease.

Since the mid-17th century, more than 4,400 human brains have been unearthed from the last 12 000 years of the archaeological record, over 1,300 of which are preserved among otherwise skeletonized remains. Despite this volume of finds, the perception remains that preserved brains represent ‘unique’ or ‘extremely rare’ discoveries [1]. Human soft tissues are understood to persist through time by well-characterized mechanisms of preservation such as dehydration, freezing and tanning, brought about by anthropogenic (i.e. the result of deliberate human intervention) or naturally occurring factors. Thus, it is not surprising that the brain endures alongside other internal organs where there is extensive soft tissue preservation.

The cyberattack on Change Healthcare last month should serve as a wake-up call for the health care industry, which needs to focus on securing its infrastructure, says Kevin Fu, a Northeastern University professor of electrical and computer engineering and cybersecurity adviser to the White House.

In this episode, Peter and Will dive into satellite technology, what it takes to create a company like Planet, and its effect on ecosystems across the world.

Will Marshall, Chairman, Co-Founder, and CEO of Planet, transitioned from a scientist at NASA to an entrepreneur, leading the company from its inception in a garage to a public entity with over 800 staff. With a background in physics and extensive experience in space technology, he has been instrumental in steering Planet towards its mission of propelling humanity towards sustainability and security, as outlined in its Public Benefit Corporation charter. Recognized for his contributions to the field, Marshall serves on the board of the Open Lunar Foundation and was honored as a Young Global Leader by the World Economic Forum.

Learn more about Planet: https://www.planet.com/

———-

In a study published in the journal Science Advances, researchers from Peking University have unveiled a miniaturized implantable sensor capable of health monitoring without the need of transcutaneous wires, integrated circuit chips, or bulky readout equipment, thereby reducing infection risks, improving biocompatibility, and enhancing portability. The study is titled “Millimeter-scale magnetic implants paired with a fully integrated wearable device for wireless biophysical and biochemical sensing.”

Compared to healthy volunteers, affected U.S. government personnel did not exhibit MRI-detectable brain injury or biological abnormalities that would explain symptoms.

Using advanced imaging techniques and in-depth clinical assessments, a research team at the National Institutes of Health (NIH) found no significant evidence of MRI-detectable brain injury, nor differences in most clinical measures compared to controls, among a group of federal employees who experienced anomalous health incidents (AHIs).

These incidents, including hearing noise and experiencing head pressure followed by headache, dizziness, cognitive dysfunction, and other symptoms, have been described in the news media as “Havana Syndrome” since U.S. government personnel stationed in Havana first reported the incidents. Scientists at the NIH Clinical Center conducted the research over the course of nearly five years and published their findings on March 18 in two papers in JAMA.

Google Research releases the Skin Condition Image Network (SCIN) dataset in collaboration with physicians at Stanford Med.

Designed to reflect the broad range of conditions searched for online, it’s freely available as a resource for researchers, educators, & devs → https://goo.gle/4amfMwW

#AI #medicine


Health datasets play a crucial role in research and medical education, but it can be challenging to create a dataset that represents the real world. For example, dermatology conditions are diverse in their appearance and severity and manifest differently across skin tones. Yet, existing dermatology image datasets often lack representation of everyday conditions (like rashes, allergies and infections) and skew towards lighter skin tones. Furthermore, race and ethnicity information is frequently missing, hindering our ability to assess disparities or create solutions.