Archive for the ‘habitats’ category: Page 85

Jan 15, 2012

Access to Space: It’s as Cheap and Easy as it will get for a Long Time

Posted by in categories: habitats, space

Throughout most of our lifetimes, there has been a lot of talk and speculation about Human colonies beyond Earth. I personally grew up reading about how we would send people back to the Moon, then to Mars and beyond. We would establish settlements and on other planets and build spacious habitats out of metals mined in the asteroid belt. We would send our grandchildren to the outer planets on nuclear powered rockets and reap the bounty of the Solar System!

All we need is cheap and reliable access to space. The Space Shuttle was going to launch every week and only cost $20 million per launch. It would ride atop a carrier craft above the atmosphere where it would blast into orbit, deliver it’s payload and any passengers, and glide back to earth, to be refit, refueled and mated to it’s carrier plane for it’s next trip a few weeks later. It just had to be approved by Congress, which they did: after making it one of the biggest jobs programs since the New Deal. The Space Shuttle had been repurposed from a space transport system to a massively expensive vote buying scheme. The extreme decentralization and patronage, to the point of leaving a Krushchev era Soviet planner in shocked amazement, drove the per launch cost close to a billion dollars by the time the program was finally shut down.

At least we have cheap and reliable Russian Protons now that the Soviet Union has fallen and the Russians are desperate for hard currency, except that they aren’t really that cheap or reliable. Well, we have some startup companies who are going to get us into space on the cheap using old NASA surplus hardware (Huh?). Only in the past decade are we seeing any real practical alternatives, in the form of Dot Com billionaires putting their own money into spacecraft development. The most promising is SpaceX founded by Elon Musk. He has had his eye on Mars for a long time and finally developed a cheap rocket that will soon carry humans into space. He did so by using the same technology that has been available for the past three decades, only without the political interference, and shown how cheap space travel can be. The base price: $53 million for a cargo capacity comparable to the Space Shuttle. Interestingly, this amounts to around $20 million in 1980 dollars. We are finally at the point we were supposed to be 30 years ago!

Unfortunately, it looks like this is about as good as it will get any time soon. The Space Elevator is going nowhere, with the laws of physics getting in the way and all, not to mention the problems posed by micrometeorites, space junk, and monatomic oxygen if it does get built with some as yet undiscovered wonder material. Theoretically, carbon nanotubes have the strength needed. Maybe. With no significant safety margin. Other alternatives such as space guns and space piers have the same problems of prohibitively massive initial costs, fragility, and they are still useless for carrying people into space due to either long travel times (= high radiation exposure) or high acceleration.

Continue reading “Access to Space: It's as Cheap and Easy as it will get for a Long Time” »

Jan 11, 2012

Wildlife Sanctuaries in Eco-Disaster Areas

Posted by in categories: ethics, habitats, nuclear energy, sustainability

It was with great satisfaction that I watched a recent (Horizon?) documentary on the wildlife, wolf population and introduced endangerd species flourishing in the Chernobyl district in the abandonment of the area by mankind 25 years ago — with most not willing to hunt in the area for fear of contracting radiation poisoning. One wonders if this will be the template for the future, that eco-disaster areas will be abandoned to become our new wildlife sanctuaries. Or is it morally wrong to designate such areas as wildlife sanctuaries and wilfully expose the animal kindom to such levels of radiation?

After Fukushima the world was reawakened to the real danger of fault tollerance at nuclear power plants — but as a relatively clean technology is surely here to stay. Is there a need for a more inclusive debate on the location of such reactors to areas that are a) less likey to suffer natural disasters but b) also provide a suitable follow-on purpose in the event of area abandonment due to radiation. Opinions welcome.

Sep 13, 2011

Economics and Survival: An In-space 2-for-1 Bargain

Posted by in categories: economics, existential risks, habitats, space, sustainability

There is growing recognition that the Moon is the logical next step for sustainably opening space to human settlement. It is now confirmed that both lunar poles contain appreciable quantities of ice containing water and also carbon and nitrogen containing compounds. Since the Moon is always only a 3-day trip away, it easily beats low-gravity asteroids as the most economic place to mine water ice. Similarly, since the Moon has only a 3-second roundtrip communications delay, teleoperated robots could mine and process the lunar ice at a fraction of what human miners would cost. That ice, brought back to Low Earth Orbit (LEO) could establish a new space economy including on-orbit refueling, boosting large communications satellites to GEO, sending tourists around or even to the Moon, and facilitating NASAs Beyond Earth Orbit activities. So the Moon is a great place to develop economic in-space resources.

But, what does all of this do with survival?

Amongst those people who understand extinction risks to humanity, it is generally recognized that an off-Earth, self-sufficient colony would go a very long ways to ensuring the survival of humanity as a species. An orbiting colony would not be a good choice because, if the Earth’s biosphere were contaminated with an ecophage, the Earth itself would not anymore be a source of supplies, and Earth orbit contains no resources except for sunlight. Mars, an asteroid, or a distant moon could be a location for an off-Earth colony, but all of these would be considerably more expensive to establish than on the Moon. For those of us who think it prudent that we should purchase “insurance” against the extinction of humanity sooner rather than later, the least expensive location makes the most sense. So the Moon is a great place to establish a colony for the purpose of survival.

Interesting, so the Moon is the best place for both economics and survival. Perhaps the two could be combined into a single program. But, in the Age of Austerity, it is unlikely that our governments are going to fund a large new space program. So how can this be done economically?

Continue reading “Economics and Survival: An In-space 2-for-1 Bargain” »

Apr 2, 2011

A (Relatively) Brief Introduction to The Principles of Economics & Evolution: A Survival Guide for the Inhabitants of Small Islands, Including the Inhabitants of the Small Island of Earth

Posted by in categories: asteroid/comet impacts, biological, complex systems, cosmology, defense, economics, existential risks, geopolitics, habitats, human trajectories, lifeboat, military, philosophy, sustainability

(NOTE: Selecting the “Switch to White” button on the upper right-hand corner of the screen may ease reading this text).

“Who are you?” A simple question sometimes requires a complex answer. When a Homeric hero is asked who he is.., his answer consists of more than just his name; he provides a list of his ancestors. The history of his family is an essential constituent of his identity. When the city of Aphrodisias… decided to honor a prominent citizen with a public funeral…, the decree in his honor identified him in the following manner:

Hermogenes, son of Hephaistion, the so-called Theodotos, one of the first and most illustrious citizens, a man who has as his ancestors men among the greatest and among those who built together the community and have lived in virtue, love of glory, many promises of benefactions, and the most beautiful deeds for the fatherland; a man who has been himself good and virtuous, a lover of the fatherland, a constructor, a benefactor of the polis, and a savior.
– Angelos Chaniotis, In Search of an Identity: European Discourses and Ancient Paradigms, 2010

I realize many may not have the time to read all of this post — let alone the treatise it introduces — so for those with just a few minutes to spare, consider abandoning the remainder of this introduction and spending a few moments with a brief narrative which distills the very essence of the problem at hand: On the Origin of Mass Extinctions: Darwin’s Nontrivial Error.

Continue reading “A (Relatively) Brief Introduction to The Principles of Economics & Evolution: A Survival Guide for the Inhabitants of Small Islands, Including the Inhabitants of the Small Island of Earth” »

Nov 11, 2010

What’s Your Dream for the Future of California?

Posted by in categories: education, events, existential risks, futurism, habitats, human trajectories, open access, policy, sustainability

California Dreams Video 1 from IFTF on Vimeo.


Put yourself in the future and show us what a day in your life looks like. Will California keep growing, start conserving, reinvent itself, or collapse? How are you living in this new world? Anyone can enter,anyone can vote; anyone can change the future of California!

California has always been a frontier—a place of change and innovation, reinventing itself time and again. The question is, can California do it again? Today the state is facing some of its toughest challenges. Launching today, IFTF’s California Dreams is a competition with an urgent challenge to recruit citizen visions of the future of California—ideas for what it will be like to live in the state in the next decade—to start creating a new California dream.

Continue reading “What's Your Dream for the Future of California?” »

Apr 14, 2010

Technology Readiness Levels for Non-rocket Space Launch

Posted by in categories: asteroid/comet impacts, engineering, habitats, human trajectories, space

An obvious next step in the effort to dramatically lower the cost of access to low Earth orbit is to explore non-rocket options. A wide variety of ideas have been proposed, but it’s difficult to meaningfully compare them and to get a sense of what’s actually on the technology horizon. The best way to quantitatively assess these technologies is by using Technology Readiness Levels (TRLs). TRLs are used by NASA, the United States military, and many other agencies and companies worldwide. Typically there are nine levels, ranging from speculations on basic principles to full flight-tested status.

The system NASA uses can be summed up as follows:

TRL 1 Basic principles observed and reported
TRL 2 Technology concept and/or application formulated
TRL 3 Analytical and experimental critical function and/or characteristic proof-of concept
TRL 4 Component and/or breadboard validation in laboratory environment
TRL 5 Component and/or breadboard validation in relevant environment
TRL 6 System/subsystem model or prototype demonstration in a relevant environment (ground or space)
TRL 7 System prototype demonstration in a space environment
TRL 8 Actual system completed and “flight qualified” through test and demonstration (ground or space)
TRL 9 Actual system “flight proven” through successful mission operations.

Progress towards achieving a non-rocket space launch will be facilitated by popular understanding of each of these proposed technologies and their readiness level. This can serve to coordinate more work into those methods that are the most promising. I think it is important to distinguish between options with acceleration levels within the range human safety and those that would be useful only for cargo. Below I have listed some non-rocket space launch methods and my assessment of their technology readiness levels.

Continue reading “Technology Readiness Levels for Non-rocket Space Launch” »

Jul 1, 2009

Electron Beam Free Form Fabrication process — progress toward self sustaining structures

Posted by in categories: complex systems, engineering, habitats, lifeboat, space, sustainability

For any assembly or structure, whether an isolated bunker or a self sustaining space colony, to be able to function perpetually, the ability to manufacture any of the parts necessary to maintain, or expand, the structure is an obvious necessity. Conventional metal working techniques, consisting of forming, cutting, casting or welding present extreme difficulties in size and complexity that would be difficult to integrate into a self sustaining structure.

Forming requires heavy high powered machinery to press metals into their final desired shapes. Cutting procedures, such as milling and lathing, also require large, heavy, complex machinery, but also waste tremendous amounts of material as large bulk shapes are cut away emerging the final part. Casting metal parts requires a complex mold construction and preparation procedures, not only does a negative mold of the final part need to be constructed, but the mold needs to be prepared, usually by coating in ceramic slurries, before the molten metal is applied. Unless thousands of parts are required, the molds are a waste of energy, resources, and effort. Joining is a flexible process, and usually achieved by welding or brazing and works by melting metal between two fixed parts in order to join them — but the fixed parts present the same manufacturing problems.

Ideally then, in any self sustaining structure, metal parts should be constructed only in the final desired shape but without the need of a mold and very limited need for cutting or joining. In a salient progressive step toward this necessary goal, NASA demonstrates the innovative Electron Beam Free Forming Fabrication ( Process. A rapid metal fabrication process essentially it “prints” a complex three dimensional object by feeding a molten wire through a computer controlled gun, building the part, layer by layer, and adding metal only where you desire it. It requires no molds and little or no tooling, and material properties are similar to other forming techniques. The complexity of the part is limited only by the imagination of the programmer and the dexterity of the wire feed and heating device.

Continue reading “Electron Beam Free Form Fabrication process — progress toward self sustaining structures” »

Jun 16, 2009

Gulches — freedom lifeboats

Posted by in categories: education, geopolitics, habitats, lifeboat, nuclear weapons

Jim Davies of Strike the Root writes about Galt’s Gulch and some gulch-like projects. These appeal to him because of the exponential trends in government power and abuse of power. He writes, in part,

“We have the serious opportunity in our hands right now of terminating the era of government absolutely, and so of removing from the human race the threat of ever more brutal tyranny ending only with WMD annihilation–while opening up vistas of peaceful prosperity and technological progress which even a realist like myself cannot find words to describe. ”

Avoiding those terrible events is what building our Lifeboat is all about. Got Lifeboat?

Feb 24, 2009

I Don’t Want To Live in a Post-Apocalyptic World

Posted by in categories: asteroid/comet impacts, defense, existential risks, futurism, habitats, robotics/AI, space

Image from The Road film, based on Cormac McCarthy's book

How About You?
I’ve just finished reading Cormac McCarthy’s The Road at the recommendation of my cousin Marie-Eve. The setting is a post-apocalyptic world and the main protagonists — a father and son — basically spend all their time looking for food and shelter, and try to avoid being robbed or killed by other starving survivors.

It very much makes me not want to live in such a world. Everybody would probably agree. Yet few people actually do much to reduce the chances of of such a scenario happening. In fact, it’s worse than that; few people even seriously entertain the possibility that such a scenario could happen.

People don’t think about such things because they are unpleasant and they don’t feel they can do anything about them, but if more people actually did think about them, we could do something. We might never be completely safe, but we could significantly improve our odds over the status quo.

Continue reading “I Don't Want To Live in a Post-Apocalyptic World” »

Jan 15, 2009

What should be at the center of the U.S. stimulus package

Posted by in categories: existential risks, geopolitics, habitats, lifeboat, space, sustainability

The projected size of Barack Obama’s “stimulus package” is heading north, from hundreds of billions of dollars into the trillions. And the Obama program comes, of course, on top of the various Bush administration bailouts and commitments, estimated to run as high as $8.5 trillion.

Will this money be put to good use? That’s an important question for the new President, and an even more important question for America. The metric for all government spending ultimately comes down to a single query: What did you get for it?

If such spending was worth it, that’s great. If the country gets victory in war, or victory over economic catastrophe, well, obviously, it was worthwhile. The national interest should never be sacrificed on the altar of a balanced budget.

So let’s hope we get the most value possible for all that money–and all that red ink. Let’s hope we get a more prosperous nation and a cleaner earth. Let’s also hope we get a more secure population and a clear, strategic margin of safety for the United States. Yet how do we do all that?

Continue reading “What should be at the center of the U.S. stimulus package” »

Page 85 of 86First7980818283848586