Toggle light / dark theme

Genetic overlap of 14 psychiatric disorders explains why patients often have multiple diagnoses

An international collective of researchers is delivering new insights into why having multiple psychiatric disorders is the norm rather than the exception. In a study published today in the journal Nature, the team provides the largest and most detailed analysis to date on the genetic roots shared among 14 conditions.

The study is the latest effort from the Psychiatric Genomics Consortium’s Cross-Disorder Working Group, co-chaired by Kenneth Kendler, M.D., a professor in the Department of Psychiatry at Virginia Commonwealth University’s School of Medicine, and Jordan Smoller, M.D., a professor in the Department of Psychiatry at Harvard Medical School.

The majority of people diagnosed with a psychiatric disorder will ultimately be diagnosed with a second or third disorder in their lifetime, creating challenges for defining and treating these conditions. While a person’s environment and lived experience influence their risk for developing multiple disorders, their genetic makeup can also play a significant role.

Emerging structural insights into PRC2 function in development and disease

Structural insights into PRC2 function in development and disease.

Polycomb repressive complex 2 (PRC2) is a central epigenetic regulator of developmental gene repression that displays remarkable complexity arising from multiple molecular layers.

Enzyme catalysis and chromatin targeting form the basis of the common and distinct functions of PRC2.1 and PRC2.2, serving as focal points in the cellular regulation of PRC2 activity under both physiological and pathological contexts.

Structural biology has begun to clarify the molecular mechanisms underlying key functions of PRC2 and uncover new modes of regulation, with much still remaining to be understood about the elaborate system of PRC2-mediated gene control. https://sciencemission.com/PRC2-function-in-development-and-disease


Polycomb repressive complex 2 (PRC2) is a key epigenetic enzyme complex that mediates developmental gene repression mainly by depositing the repressive H3K27me3 histone mark. PRC2 operates through its distinct forms, PRC2.1 and PRC2.2, each defined by unique accessory subunits, with additional complexity introduced by other molecular variants such as developmentally regulated homologs and isoforms. PRC2 function is primarily dictated by its enzymatic activity and chromatin recruitment, both of which are rigorously controlled during development and can be dysregulated by disease-associated mutations and oncoproteins. Structural biology has begun to provide important mechanistic insights into various aspects of PRC2 assembly, catalysis, chromatin targeting, and cellular regulation at atomic resolution, addressing several longstanding questions about the Polycomb repression system.

First human DNA-cutting enzyme that senses physical tension discovered

An international research team has identified a human protein, ANKLE1, as the first DNA-cutting enzyme (nuclease) in mammals capable of detecting and responding to physical tension in DNA. This “tension-sensing” mechanism plays a vital role in maintaining genetic integrity during cell division—a process that, when disrupted, can lead to cancer and other serious diseases.

The study, titled “ANKLE1 processes chromatin bridges by cleaving mechanically stressed DNA,” published in Nature Communications, represents a major advance in the understanding of cellular DNA protection.

The research was conducted through a cross-disciplinary collaboration between Professor Gary Ying Wai Chan’s laboratory at the School of Biological Sciences, The University of Hong Kong (HKU) and Dr. Artem Efremov’s biophysics team at Shenzhen Bay Laboratory (SZBL), with additional contributions from researchers at the Hong Kong University of Science and Technology (HKUST) and the Francis Crick Institute in London.

Gene therapy improves movement in kids with spinal muscular atrophy

A single-dose gene replacement therapy is found to improve movement ability in children over 2 years of age and teenagers with spinal muscular atrophy, according to research published in Nature Medicine. The results of this phase 3 clinical trial, involving 126 children and adolescents, could support an alternative to lifelong, repeat-dose treatments for people living with spinal atrophy beyond the age of 2 years.

Spinal muscular atrophy is a rare genetic condition that causes muscle weakness and loss of movement over time. It develops because the body cannot make enough of a protein, called survival motor neuron, needed for healthy nerve cells.

Onasemnogene abeparvovec is a gene therapy that restores production of this missing protein in a single treatment. However, it is currently approved in the U.S. and Europe only as a single intravenous treatment for children under 2 years of age. Therefore, those older than 2 years of age can receive treatments only to slow the disease, and these must be taken regularly, either by injection or orally.

Taxonomy of Bacteria: Identification and Classification

We’ve been looking at bacteria for a few centuries now, so how do we categorize them? We love to classify things and put them in groups, so how does that work for bacteria? Well let’s learn about Gram-staining, antigens, other phenotypic and genotypic properties, and we will be well on our way to understanding this process!

Script by Kellie Vinal.

Watch the whole Microbiology playlist: http://bit.ly/ProfDaveMicrobio.

General Chemistry Tutorials: http://bit.ly/ProfDaveGenChem.
Organic Chemistry Tutorials: http://bit.ly/ProfDaveOrgChem.
Biochemistry Tutorials: http://bit.ly/ProfDaveBiochem.
Biology/Genetics Tutorials: http://bit.ly/ProfDaveBio.
Anatomy & Physiology Tutorials: http://bit.ly/ProfDaveAnatPhys.
Biopsychology Tutorials: http://bit.ly/ProfDaveBiopsych.
Immunology Tutorials: http://bit.ly/ProfDaveImmuno.
History of Drugs Videos: http://bit.ly/ProfDaveHistoryDrugs.

EMAIL► [email protected].
PATREON► / professordaveexplains.

Check out \.

Who’s Really Winning At Longevity? (Featuring @Unaging.Crissman.Loomis)

Join us on Patreon! https://www.patreon.com/MichaelLustgartenPhD

Discount Links/Affiliates:
Blood testing (where I get the majority of my labs): https://www.ultalabtests.com/partners/michaellustgarten.

At-Home Metabolomics: https://www.iollo.com?ref=michael-lustgarten.
Use Code: CONQUERAGING At Checkout.

Clearly Filtered Water Filter: https://get.aspr.app/SHoPY

Epigenetic, Telomere Testing: https://trudiagnostic.com/?irclickid=U-s3Ii2r7xyIU-LSYLyQdQ6…M0&irgwc=1
Use Code: CONQUERAGING

NAD+ Quantification: https://www.jinfiniti.com/intracellular-nad-test/

Scientists shed new light on the shared genetic basis of psychiatric disorders

New research uncovers how shared genes contribute to various psychiatric disorders. This breakthrough highlights the importance of pleiotropic genes—those affecting multiple conditions—and offers new avenues for mental health treatment development.

Children with better musical skills may benefit from a prolonged window of brain plasticity

Children who excel at keeping the beat may possess brains that mature more slowly, extending their capacity for learning. A new longitudinal twin study indicates that this prolonged development is shaped by both genetic predispositions and musical engagement.

/* */