Toggle light / dark theme

AI and lab tests to predict genetic disease risk

When genetic testing reveals a rare DNA mutation, doctors and patients are frequently left in the dark about what it actually means. Now, researchers have developed a powerful new way to determine whether a patient with a mutation is likely to actually develop disease, a concept known in genetics as penetrance.

The team set out to solve this problem using artificial intelligence (AI) and routine lab tests like cholesterol, blood counts, and kidney function. Details of the findings were reported in the journal Science. Their new method combines machine learning with electronic health records to offer a more accurate, data-driven view of genetic risk.

Traditional genetic studies often rely on a simple yes/no diagnosis to classify patients. But many diseases, like high blood pressure, diabetes, or cancer, don’t fit neatly into binary categories. The researchers trained AI models to quantify disease on a spectrum, offering more nuanced insight into how disease risk plays out in real life.

Using more than 1 million electronic health records, the researchers built AI models for 10 common diseases. They then applied these models to people known to have rare genetic variants, generating a score between 0 and 1 that reflects the likelihood of developing the disease.

A higher score, closer to 1, suggests a variant may be more likely to contribute to disease, while a lower score indicates minimal or no risk. The team calculated “ML penetrance” scores for more than 1,600 genetic variants.

Some of the results were surprising, say the investigators. Variants previously labeled as “uncertain” showed clear disease signals, while others thought to cause disease had little effect in real-world data.

Direct plasma membrane-to-ER lipid transfer outpaces vesicular trafficking, study reveals

Max Planck Institute of Molecular Cell Biology and Genetics led a study showing that directional, non-vesicular lipid transport drives fast, species-selective lipid sorting, outpacing slower, less specific vesicular trafficking, and yielding a quantitative map of retrograde lipid transport in cells.

Thousands of lipid species occupy distinct organelle membranes, with task differences that determine cellular function. Gaps in live-cell imaging capabilities have limited clarity on how individual lipids move between organelles to maintain those tasks.

Biosynthesis of lipids begins in the (ER), followed by distribution toward the and subsequent recycling back into the ER or catabolism in lysosomes, peroxisomes, and mitochondria.

CRISPR’s efficiency triples in lab tests with DNA-wrapped nanoparticles

With the power to rewrite the genetic code underlying countless diseases, CRISPR holds immense promise to revolutionize medicine. But until scientists can deliver its gene-editing machinery safely and efficiently into relevant cells and tissues, that promise will remain out of reach.

Now, Northwestern University chemists have unveiled a new type of nanostructure that dramatically improves CRISPR delivery and potentially extends its scope of utility.

Called lipid nanoparticle spherical nucleic acids (LNP-SNAs), these tiny structures carry the full set of CRISPR editing tools—Cas9 enzymes, guide RNA and a DNA repair template—wrapped in a dense, protective shell of DNA. Not only does this DNA coating shield its cargo, but it also dictates which organs and tissues the LNP-SNAs travel to and makes it easier for them to enter cells.

Capturing language change through the genes

Throughout human history, there have been many instances where two populations came into contact—especially in the past few thousand years because of large-scale migrations as a consequence of conquests, colonialization, and, more recently, globalization. During these encounters, not only did populations exchange genetic material, but also cultural elements.

When populations interact, they may borrow technologies, beliefs, practices, and also, crucially, aspects of language. With this, sounds, words or grammatical patterns can be exchanged from one language to the other. For example, English borrowed “sausage” from French after the Norman conquests, while French later borrowed “sandwich” from English.

However, studying these linguistic exchanges can be challenging due to the limited historical records of human contacts, especially on a global scale. As a result, our understanding of how languages evolved over time through such interactions remains incomplete.

AI tool targets RNA structures to unravel secrets of the dark genome

We mapped the human genome decades ago, but most of it is still a black box. Now, UNSW scientists have developed a tool to peer inside and what they find could reshape how we think about disease.

Your genome is the genetic map of you, and we understand almost none of it.

Our handle on the bits of the genome that tell the body how to do things (“make eyes blue,” “build ,” “give this person sickle cell anemia”) is OK, but there are vast areas of the genome that don’t appear to do anything.

Microglia gene activity shifts across Alzheimer’s stages, revealing possible therapy targets

Alzheimer’s disease (AD) is a debilitating neurodegenerative disorder that causes progressive memory loss and a decline in mental (i.e., cognitive) abilities. Statistics suggest that between 500,000 and 900,000 people are diagnosed with this disease every year, while several hundreds of thousands experience dementia or other aging-related cognitive decline.

While there are some available treatments designed to delay cognitive decline in individuals with mild or moderate AD symptoms, a cure for the disease has not yet been identified. A better understanding of the neural, genetic, cellular and that contribute to the disease’s progression, as well as to neurodegeneration in general, could thus be highly valuable, as it could inform the future development of alternative treatments.

Past neuroscience research has identified the key role of microglia in AD. These are specialized that monitor the environment in the brain, clearing out , debris and pathogens. The dysregulation of these cells has been linked to neurodegeneration and to the progression of AD.

Harnessing mechanobiology to combat kidney disease

Chronic kidney disease affects an estimated 37 million people in the U.S., and for many, there is no cure. But a new research project at Washington University in St. Louis seeks to change that by uncovering the mechanical basis of kidney cell injury.

To tackle chronic kidney disease, Guy Genin, the Harold and Kathleen Faught Professor of Mechanical Engineering at the WashU McKelvey School of Engineering, and Jeffrey Miner, the Eduardo and Judith Slatopolsky Professor of Medicine in Nephrology at WashU Medicine, teamed up with Hani Suleiman, an assistant professor of medicine at the University of Texas Southwestern Medical Center. The interdisciplinary team, with expertise spanning medicine, cell biology, genetics and engineering, received a five-year $4 million grant from the National Institute of Diabetes and Digestive and Kidney Diseases, part of the National Institutes of Health (NIH).

With the NIH’s support, the team plans to study the mechanobiology of podocytes, specialized cells in the kidney that help filter blood.


Researchers at Washington University in St. Louis have received a $4 million grant to study specialized cells that could help treat kidney disease.

World’s first: China doctors transplant pig lung into brain-dead man

World’s first pig lung transplant in brain-dead man lasts nine days in China.


In a medical first, a pig lung was transplanted into a brain-dead human, where it functioned for nine days.

Surgeons at Guangzhou Medical University, China, performed the cross-species lung transplantation.

The recipient, a 39-year-old man who had suffered a brain hemorrhage, received the left lung from a Chinese Bama Xiang pig that had undergone genetic modifications.

/* */