Toggle light / dark theme

Dyson to invest $1.1 billion in Singapore as part of global plan

SINGAPORE (Reuters) — Dyson, the inventor of the bagless vacuum cleaner, said on Friday it would invest S$1.5 billion ($1.1 billion) in Singapore over the next four years, the newest phase of a S$4.9 billion global investment plan.

When Dyson announced the global investment plan in 2020, it said the money would be divided between the company’s global head office in Singapore, its two campuses in Wiltshire, southern England, and the Philippines.

On Friday, it launched its new global headquarters in a restored power station in the Southeast Asian city-state, where it plans to hire more than 250 additional engineers and scientists.

The Speed of Sound on Mars Is Strangely Different, Scientists Reveal

Scientists have confirmed the speed of sound on Mars, using equipment on the Perseverance rover to study the red planet’s atmosphere, which is very different to Earth’s.

What they discovered could have some strange consequences for communication between future Martians.

The findings suggest that trying to talk in Mars’ atmosphere might produce a weird effect, since higher-pitched sound seems to travel faster than bass notes. Not that we’d try, since Mars’ atmosphere is unbreathable, but it’s certainly fun to think about!

Scientists identify neurons in the brain that drive competition and social behavior within groups

Li and his colleagues found that the animals’ social ranking in the group was closely linked to the results of competition, and by examining recordings from neurons in the brains of mice in real time, the team discovered that neurons in the anterior cingulate region of the brain store this social ranking information to inform upcoming decisions.

“Collectively, these neurons held remarkably detailed representations of the group’s behavior and their dynamics as the animals competed together for food, in addition to information about the resources available and the outcome of their past interactions,” explains senior author Ziv M. Williams, MD, a neurosurgical oncologist at MGH. “Together, these neurons could even predict the animal’s own future success well before competition onset, meaning that they likely drove the animals’ competitive behavior based on whom they interacted with.”

Manipulating the activity of these neurons, on the other hand, could artificially increase or decrease an animal’s competitive effort and therefore control their ability to successfully compete against others. “In other words, we could tune up and down the animal’s competitive drive and do so selectively without affecting other aspects of their behavior such as simple speed or motivation,” says Williams.

This Wild Rocket Could Help Make Hypersonic Travel a Reality

To develop the hypersonic vehicles of the future, we need to properly understand how to predict boundary layer transition on realistic vehicle shapes and what the minute effects of turbulent flow on hypersonic vehicles are. Data from the BOLT II flight experiment will help do just that.


Both the BOLT and BOLT II vehicles have a complex, swept geometry with a concave surface to represent a real hypersonic vehicle. The aim is to produce complex, real-world data that engineers and scientists can use to improve their models for predicting transition on hypersonic vehicles.

A separate experiment is run on each side of the vehicle, with one “smooth” side and one “rough” side. The flow running length along the vehicle is 1 meter, slightly larger than the original BOLT vehicle.

BOLT II will be launched on a suborbital trajectory by a two-stage sounding rocket. During its ascent, it is planned to reach Mach 6, where an ascent flight experiment will occur. It will turn over in space and then re-enter the atmosphere, before performing a descent experiment at Mach 5.5.