Understanding how ecosystems respond to ubiquitous microplastic (MP) pollution is crucial for ensuring global food security. Here, we conduct a multiecosystem meta-analysis of 3,286 data points and reveal that MP exposure leads to a global reduction in photosynthesis of 7.05 to 12.12% in terrestrial plants, marine algae, and freshwater algae. These reductions align with those estimated by a constructed machine learning model using current MP pollution levels, showing that MP exposure reduces the chlorophyll content of photoautotrophs by 10.96 to 12.84%. Model estimates based on the identified MP-photosynthesis nexus indicate annual global losses of 4.11 to 13.52% (109.73 to 360.87 MT·y−1) for main crops and 0.31 to 7.24% (147.52 to 3415.11 MT C·y−1) for global aquatic net primary productivity induced by MPs. Under scenarios of efficient plastic mitigation, e.g.
Category: food – Page 7
Twenty years after the first publication that used the term microplastic, we review current understanding, refine definitions, and consider future prospects. Microplastics arise from multiple sources, including tires, textiles, cosmetics, paint, and the fragmentation of larger items. They are widely distributed throughout the natural environment, with evidence of harm at multiple levels of biological organization. They are pervasive in food and drink and have been detected throughout the human body, with emerging evidence of negative effects. Environmental contamination could double by 2040, and wide-scale harm has been predicted. Public concern is increasing, and diverse measures to address microplastic pollution are being considered in international negotiations.
Imagine a large city recovering from a devastating hurricane. Roads are flooded, the power is down, and local authorities are overwhelmed. Emergency responders are doing their best, but the chaos is massive.
AI-controlled drones survey the damage from above, while intelligent systems process satellite images and data from sensors on the ground and air to identify which neighborhoods are most vulnerable.
Meanwhile, AI-equipped robots are deployed to deliver food, water and medical supplies into areas that human responders can’t reach. Emergency teams, guided and coordinated by AI and the insights it produces, are able to prioritize their efforts, sending rescue squads where they’re needed most.
Electricity could replace sunlight in growing crops, potentially transforming global agriculture.
Newly discovered brain cells count each bite before sending the order to cease eating a meal. Columbia scientists have found specialized neurons in the brains of mice that order the animals to stop eating.
Though many feeding circuits in the brain are known to play a role in monitoring food intake, the neurons in those circuits do not make the final decision to cease eating a meal.
The neurons identified by the Columbia scientists, a new element of these circuits, are located in the brainstem, the oldest part of the vertebrate brain. Their discovery could lead to new treatments for obesity.
A viral video featuring a woman who credits sour sop leaves, apricot seeds, and dietary changes for overcoming stage 4 metastatic breast cancer has ignited widespread discussion on social media.
Originally shared by Super Food Mood on Instagram, the video has amassed significant traction, drawing both support and skepticism.
A Survivor’s Testimony
Cow D lived on a dairy farm in New Zealand. The animal looked like the typical black-and-white cow farmers raise for milk, except for one thing: Researchers had outfitted Cow D with an artificial fistula—a hole offering them a way to reach the microbes inhabiting the animal’s bathtub-size stomach. But it’s what happened next that offers a porthole into the global debate over the use of genetic data.
In the spring of 2009, Samantha Noel, then a doctoral researcher at Massey University in Palmerston North, New Zealand, reached into Cow D’s rumen and plucked out a strain of Lachnospiraceae bacterium, later dubbed ND2006. Another team of geneticists sequenced the microbe’s complete set of genes, or genome, and uploaded the information, which was then shared with GenBank, a public database run by the US National Institutes of Health. If genes are the book of life, then this process was like adding a digital copy to an online library. In policy circles, these lines of code go by another name: digital sequence information, or DSI.
UT Austin researchers have developed a biodegradable, biomass-based hydrogel that efficiently extracts drinkable water from the air, offering a scalable, sustainable solution for water access in off-grid communities, emergency relief, and agriculture.
Discarded food scraps, stray branches, seashells, and other natural materials serve as key ingredients in a new system developed by researchers at The University of Texas at Austin that can extract drinkable water from thin air.
This innovative system, called “molecularly functionalized biomass hydrogels,” transforms a wide range of natural products into sorbents—materials that absorb liquids. By pairing these sorbents with mild heat, the researchers can extract gallons of drinkable water from the atmosphere, even in arid conditions.
Summary: Concerns over potential negative impacts of AI have dominated headlines, particularly regarding its threat to employment. However, a closer examination reveals AI’s immense potential to revolutionize equal and high quality access to necessities such as education and healthcare, particularly in regions with limited access to resources. From India’s agricultural advancements to Kenya’s educational support, AI initiatives are already transforming lives and addressing societal needs.
The latest technology panic is over artificial intelligence (AI). The media is focused on the negatives of AI, making many assumptions about how AI will doom us all. One concern is that AI tools will replace workers and cause mass unemployment. This is likely overblown—although some jobs will be lost to AI, if history is any guide, new jobs will be created. Furthermore, AI’s ability to replace skilled labor is also one of its greatest potential benefits.
Think of all the regions of the world where children lack access to education, where schoolteachers are scarce and opportunities for adult learning are scant.
Pomelo is a large citrus fruit commonly grown in Southeast and East Asia. It has a very thick peel, which is typically discarded, resulting in a considerable amount of food waste. In a new study published in ACS Applied Materials & Interfaces, University of Illinois Urbana-Champaign researchers explore ways to utilize waste pomelo-peel biomass to develop tools that can power small electric devices and monitor biomechanical motions.
There are two main parts of the pomelo peel—a thin outer layer and a thick, white inner layer. The white part is soft and feels like a sponge when you push on it. Some people have used pomelo peels to extract compounds for essential oils or pectin, but we wanted to take advantage of the natural porous, spongy structure of the peel.
If we can upcycle the peel to higher-value products instead of simply throwing it away, we can not only reduce waste from pomelo production, consumption, and juice making, but also create more value from food and agricultural waste, said study co-author Yi-Cheng Wang, an assistant professor in the Department of Food Science and Human Nutrition, part of the College of Agricultural, Consumer and Environmental Sciences at Illinois.