Toggle light / dark theme

Prebiotic molecules central to life’s earliest metabolic processes—chemical reactions in cells that change food into energy—may have been born in deep space long before Earth existed, according to new research from the University of Hawaiʻi at Mānoa Department of Chemistry.

Scientists in the W. M. Keck Research Laboratory in Astrochemistry have recreated the found in dense interstellar clouds and discovered a way for the complete set of complex carboxylic acids—critical ingredients in modern metabolism—to form without life on timescales equivalent to a few million years.

The study, published in the Proceedings of the National Academy of Sciences, focused on molecules such as those in the Krebs cycle, a fundamental metabolic pathway used by nearly all living organisms. These molecules, which help break down nutrients to release energy, may have , forming in the icy, low-temperature environments of interstellar space.

Artificial Intelligence isn’t science fiction anymore—it’s a transformative force shaping the way we live, work, and innovate. In this groundbreaking documentary, explore the real-world applications of AI as it evolves from code into conscious collaboration. From autonomous flying drones to lifelike androids, we uncover how AI is pushing the boundaries of possibility.

The Revolution Of AI (2020)
✍️ Writers: Kyle McCabe, Christopher Webb Young.
⭐ Stars: Shivani Bigler, Jason Derenick, Barbara Grosz.
🎞️ Genre: Documentary.
🌍 Country: United States.
🗣️ Language: English.
🎭 Also Known As: Hyper Intelligence.
📅 Release Date: 2020 (United States)

Synopsis:
Join leading experts and visionary engineers as they guide us through the cutting edge of AI technology. Discover how robotic drones are learning to think for themselves, navigating unknown terrain during high-risk rescue missions. See how swarm technology is revolutionizing farming, and how robots are teaming up with humans to increase safety and productivity at work.

Watch as scientists work toward the next big leap—robots with self-awareness. These advanced machines are learning to understand themselves, make decisions, and adapt to the world around them. With androids now capable of human-like interaction, the line between machine and man continues to blur.

Despite advances in wastewater treatment, tiny plastic particles called microplastics are still slipping through, posing potential health and environmental hazards, according to new research from The University of Texas at Arlington.

Because plastic is inexpensive to produce yet lightweight and sturdy, manufacturers have found it ideal for use in nearly every consumer good, from food and beverage packaging to clothing and beauty products. The downside is that when a plastic item reaches the end of its useful life, it never truly disappears. Instead, it breaks down into smaller and smaller pieces called microplastics—particles five millimeters or less, about the width of a pencil eraser—that end up in our soil and water.

“What our systematic literature review found is that while most facilities significantly reduce microplastics loads, complete removal remains unattainable with current technologies,” said Un-Jung Kim, assistant professor of Earth and environmental sciences at UT Arlington and senior author of the study published in Science of the Total Environment.

Microplastics and much smaller nanoplastics enter the human body in various ways, for example through food or the air we breathe. A large proportion is excreted, but a certain amount remains in organs, blood, and other body fluids.

In the FFG bridge project Nano-VISION, which was launched two years ago together with the start-up BRAVE Analytics, a team led by Harald Fitzek from the Institute of Electron Microscopy and Nanoanalysis at Graz University of Technology (TU Graz) and an ophthalmologist from Graz addressed the question of whether nanoplastics also play a role in ophthalmology.

The project partners have now been able to develop a method for detecting and quantifying nanoplastics in transparent body fluids and determining their chemical composition. The research is published in the journal Analytical Chemistry.

Living to 100 may sound like a dream, but thanks to advancements in anti-aging and longevity research, it’s becoming more of a realistic goal than ever before. While genetics play a role, experts say your daily habits have a major impact on how gracefully—and healthfully—you age. From diet and movement to mindset and skincare, there are key lifestyle shifts and science-backed secrets that can help slow the aging process, boost vitality, and support a longer, more vibrant life.

Robert Love, a neuroscientist, shared three anti-aging and longevity secrets you should know about if you want to “slow down aging” and “even help reverse aging.” According to him, prioritizing sleep, avoiding ultra-processed foods, and taking healthy supplements are some of the best options. Read on to learn more.

Prioritizing sleep is one of the most powerful (and underrated) anti-aging tools you have. During deep sleep, your body goes into repair mode—producing growth hormone, regenerating cells, and fixing damage caused by stress and environmental factors. This nightly “reset” helps keep your skin, organs, and even brain functioning optimally.

The world is full of tips and tricks on how to live longer—some say it’s about eating clean, others swear by cutting stress. But when someone who has crossed the 100-year mark speaks, the world listens. Dr John Scharffenberg, a preventive medicine specialist who lived a rich and active life into his 100s, offered a perspective that turns many popular beliefs on their head.

His message was simple, sincere, and backed by years of real-life observation. The secret, he said, isn’t food or relaxation—it’s something far more practical and often overlooked.

In an effort to better understand why fruit flies are immediately attracted to our food, a team of scientists developed a device, called Flywalk, to measure the response of insects to odor signals. Researchers discovered males and females of the same species were attracted to different odors and tha

While CRISPR-mediated gene editing has led to powerful advances across biology, medicine, and agriculture, challenges persist in optimizing the editing efficiency of enzymes, such as the widely used Cas9 nuclease. This is especially true in therapeutic use cases, where the goal is to attain high rates of editing via a relatively low and transient enzyme dose.

In a new study published in the April 2025 issue of The CRISPR Journal titled, “Hairpin Internal Nuclear Localization Signals in CRISPR-Cas9 Enhance Editing in Primary Human Lymphocytes,” researchers from the Innovative Genomics Institute (IGI) at the University of California (UC), Berkeley, present a strategy to improve editing efficiency in human immune cells for therapeutic applications by leveraging new constructs for nuclear localization signal (NLS) sequences.

“Efficient CRISPR enzyme production is essential for translation. This is one element that allowed the rapid clinical evaluation of Casgevy, the world’s first genome editing drug. Unfortunately, this aspect tends to be overlooked in the basic research performed in academia,” said Ross Wilson, PhD, assistant adjunct professor of molecular and cell biology at UC Berkeley, who led the new study.