Toggle light / dark theme

Simulations show that nonlinear spacetime dynamics manifest in the postmerger gravitational-wave signal of binary black hole coalescence.

“Spacetime tells matter how to move; matter tells spacetime how to curve.” This statement by physicist John Wheeler captures a defining feature of general relativity: its prediction of nonlinear spacetime dynamics. Such nonlinear evolution should be most evident in energetic spacetime events such as merging black holes, prompting the question of whether we can test for it using observations of gravitational waves emitted during such mergers. Two independent teams, led by Keefe Mitman at the California Institute of Technology [1] and Mark Ho-Yeuk Cheung at Johns Hopkins University in Maryland [2], show that this is the case. Using numerical simulations, they show the presence of nonlinearity in postmerger gravitational-wave signals.

Cancer is not a uniform disease. Rather, cancer is a disease of phenotypic plasticity, meaning tumor cells can change from one form or function to another. This includes reverting to less mature states and losing their normal function, which can result in treatment resistance, or changing their cell type altogether, which facilitates metastasis.

In addition to direct changes in your DNA in cancer, a key driver of cancer progression is where and when your DNA is activated. If your DNA contains the “words” that spell out individual genes, then epigenetics is the “grammar” of your genome, telling those genes whether they should be turned on or off in a given tissue. Even though all tissues in the body have almost exactly the same DNA sequence, they can all carry out different functions because of chemical and structural modifications that change which genes are activated and how. This “epigenome” can be influenced by environmental exposures such as diet, adding a dimension to how researchers understand drivers of health beyond the DNA code inherited from your parents.

I’m a cancer researcher, and my laboratory at Johns Hopkins University studies how the differences among normal tissues are controlled by an epigenetic code, and how this code is disrupted in cancer. In our recently published review, colleague Andre Levchenko at Yale University and I describe a new approach to understanding cancer plasticity by combining epigenetics with mathematics. Specifically, we propose how the concept of stochasticity can shed light on why cancers metastasize and become resistant to treatments.

John Vervaeke and Donald Hoffman talk about infinity, ego, death, non-dualism, and what is reality. Sponsors:
- Brilliant: https://brilliant.org/TOE for 20% off.
- Masterworks: https://www.masterworks.com promo code TOE
- Shopify: https://www.shopify.com/theories to start your free trial.

*New* TOE Website (early access to episodes): https://theoriesofeverything.org/
Patreon: https://patreon.com/curtjaimungal.
Crypto: https://tinyurl.com/cryptoTOE
PayPal: https://tinyurl.com/paypalTOE
Twitter: https://twitter.com/TOEwithCurt.
Discord Invite: https://discord.com/invite/kBcnfNVwqs.
iTunes: https://podcasts.apple.com/ca/podcast/better-left-unsaid-wit…1521758802
Pandora: https://pdora.co/33b9lfP
Spotify: https://open.spotify.com/show/4gL14b92xAErofYQA7bU4e.
Subreddit r/TheoriesOfEverything: https://reddit.com/r/theoriesofeverything.

LINKS MENTIONED:
- Important TOE ep: Lilian Dindo: https://youtu.be/L_hI7JNsbt0
- Important TOE ep: Karl Friston (Part 2): https://youtu.be/SWtFU1Lit3M
- The Meaning Crisis: https://www.youtube.com/playlist?list=PLND1JCRq8Vuh3f0P5qjrSdb5eC1ZfZwWJ
- Donald Hoffman theolocution w/ Joscha Bach: https://youtu.be/bhSlYfVtgww.
- John Vervaeke theolocution w/ Joscha Bach: https://youtu.be/rK7ux_JhHM4
- John Vervaeke theolocution w/ Bernardo Kastrup: https://youtu.be/zw6BFDJ765w.
- John Vervaeke solo TOE podcast: https://youtu.be/3p8o3-7mvQc.
- Donald Hoffman solo TOE podcast: https://youtu.be/CmieNQH7Q4w.

TIMESTAMPS:

Blurring lines between man and machine.

A breakthrough has made way for a new paradigm in bioelectronics. Earlier, it took the implantation of physical objects to initiate electronic processes in the body. Humans have incorporated technology to enhance the human experience and take charge of their evolution. They’ve also integrated devices within them that could alternately function as organs when biological tissues fail.

Scientists have now developed a viscous gel that will be enough in the future.

Researchers at Linköping, Lund, and Gothenburg universities in Sweden have successfully grown electrodes in living tissue using the body’s molecules as triggers.


Two decades of monitoring from W. M. Keck Observatory on Mauna Kea in Hawaiʻi reveals a peculiar cloud dubbed X7 being pulled apart as it accelerates toward the supermassive black hole at the center of our Milky Way galaxy.

Astronomers from the UCLA Galactic Center Orbits Initiative (GCOI) and Keck Observatory have been tracking the evolution of this dusty gas filament since 2002; high-angular resolution near-infrared images captured with Keck Observatory’s powerful adaptive optics system show X7 has become so elongated that it now has a length of 3,000 times the distance between the Earth and sun (or 3,000 astronomical units).

The study is published in today’s issue of The Astrophysical Journal.

Two groups demonstrate innovative ways to capture the ultrafast motion of electrons in atoms and molecules.

Electrons move so quickly inside of atoms and molecules that they are challenging to “capture on film” without blurring the images. One way to take fast snapshots is to ionize an atom or molecule and then use the released electrons as probes of the cloud out of which they originate. Now Gabriel Stewart at Wayne State University in Michigan and colleagues [1] and Antoine Camper at the University of Oslo in Norway and colleagues [2] have improved this “self-probing” technique. The demonstrations could lead to a better understanding of the electron motion that underpins many fundamental processes.

Scientists need to complete three key tasks to measure the evolution of an electron cloud that moves and changes on an ultrafast timescale. The first is to exactly record the beginning of the evolution—analogous to pressing “start” on a mechanical stopwatch. The second is to track how much time has gone by since the starting event—analogous to precisely measuring the ticking of the stopwatch’s second hand. And the third is to take a quick snapshot of the electron cloud so that it looks frozen in time.

The European mole, equipped with its formidable digging shovels, can effortlessly tunnel through the earth. The same holds true for the Australian marsupial mole. Despite residing in vastly different regions, the two species.

A species is a group of living organisms that share a set of common characteristics and are able to breed and produce fertile offspring. The concept of a species is important in biology as it is used to classify and organize the diversity of life. There are different ways to define a species, but the most widely accepted one is the biological species concept, which defines a species as a group of organisms that can interbreed and produce viable offspring in nature. This definition is widely used in evolutionary biology and ecology to identify and classify living organisms.

Traditionally we’ve been taught the Earth has four primary layers. Though, a distinct change at depth suggests there’s another.

Fresh evidence concerning the possibility that Earth’s inner core has a separate inner core of its own was published in Nature Communications.

In the new study, Thanh-Son Phạm and Hrvoje Tkalčić from the Australian National University collated data from existing probes.


Rost-9D/iStock.

Scientists from The Ohio State University have a new theory about how the building blocks of life—the many proteins, carbohydrates, lipids and nucleic acids that compose every organism on Earth—may have evolved to favor a certain kind of molecular structure.

It has to do with a concept called chirality. A geometric property inherent to certain , chirality can dictate a molecule’s shape, chemical reactivity, and how it interacts with other matter. Chirality is also sometimes referred to as handedness, as it can be best described as the dichotomy between our hands: Though they are not identical, the right and the left hand are mirror images of each other, and can’t be superimposed, or exactly overlaid on one another.

In the journal ACS Earth and Space Chemistry, researchers now propose a new model of how the molecules of life may have developed their “handedness.”