Menu

Blog

Archive for the ‘evolution’ category: Page 58

Jan 5, 2023

2.6 billion-year-old ancestors of the CRISPR gene-editing tool are resurrected

Posted by in categories: bioengineering, biotech/medical, evolution, genetics

An international research group has for the first time reconstructed ancestors dating back 2.6 billion years of the well-known CRISPR-Cas system, and studied their evolution over time. The results suggest that the revitalized systems not only work, but are more versatile than current versions and could have revolutionary applications. Nature Microbiology has published the results of this research, which, in the opinion of the research team, “opens up new avenues for gene editing.”

The project, led by Ikerbasque research professor Rául Pérez-Jiménez of CIC nanoGUNE, involves teams from the Spanish National Research Council, the University of Alicante, the Rare Diseases Networking Biomedical Research Center (CIBERER), the Ramón y Cajal Hospital-IRYCIS and other national and international institutions.

The acronym CRISPR refers to the repeated sequences present in the DNA of bacteria and archaea (prokaryotic organisms). Among the repeats, these microorganisms harbor fragments of genetic material from viruses that infected their ancestors; that enables them to recognize a repeat infection and defend themselves by cutting the invaders’ DNA using Cas proteins associated with these repeats. It is a mechanism (CRISPR-Cas system) of antiviral defense. This ability to recognize DNA sequences is the basis of their usefulness, and they act as if they were molecular scissors. Nowadays CRISPR-Cas technology enables pieces of genetic material to be cut and pasted into any cell, so that it can be used to edit DNA.

Jan 4, 2023

New study reveals 2.6-billion-year-old resurrected enzymes can still edit cells

Posted by in categories: biotech/medical, evolution

“This research signifies an extraordinary advance in knowledge about the origin and evolution of CRISPR-Cas systems.”

An international research team reconstructed the CRISPR-Cas system for the first time, dating back to 26 billion years ago. Their findings imply that the revived systems are functional and more adaptable than the previous iterations.

Led by teams from the Spanish National Research Council, the University of Alicante, the Rare Diseases Networking Biomedical Research Center (CIBERER), the Ramón y Cajal Hospital-IRYCIS, and other national and international institutions are working with Ikerbasque research professor Rául Pérez-Jiménez of CIC nanoGUNE.

Jan 3, 2023

Evolution of CRISPR-associated Endonucleases as Inferred from Resurrected Proteins

Posted by in categories: bioengineering, biotech/medical, evolution

Clustered regularly interspaced short palindromic repeats (CRISPR)-associated Cas9 protein is an effector that plays a major role in a prokaryotic adaptive immune system, by which invading DNA can be targeted and cut for inactivation. The Cas9 endonuclease is directed to target sites by a guide RNA (gRNA) where Cas9 can recognize specific sequences (PAMs) in foreign DNA, which then serve as an anchoring point for cleavage of the adjacent RNA-matching DNA region. Although the CRISPR-Cas9 system has been widely studied and repurposed for diverse applications (notably, genome editing), its origin and evolution remain to be elucidated. Here, we investigate the evolution of Cas9 from resurrected ancient nucleases (anCas) in extinct firmicutes species as old as 2,600 myr to the current day. Surprisingly, we demonstrate that these ancient forms were much more flexible in their PAM and gRNA scaffold requirements compared to modern day Cas9 enzymes. In addition, anCas portrays a gradual paleoenzymatic adaptation from nickase to double-strand break activity, suggesting a mechanism by which ancient CRISPR systems could propagate when harboring Cas enzymes with minimal PAMs. The oldest anCas also exhibit high levels of activity with ssDNA and ssRNA targets, resembling Cas nucleases in related system types. Finally, we illustrate editing activity of the anCas enzymes in human cells. The prediction and characterization of anCas proteins uncovers an unexpected evolutionary trajectory leading to ancient enzymes with extraordinary properties.

R. P-J., B. A-L. are co-inventors on patent application filed by CIC nanoGUNE and licenced to Integra Therapeutics S.L. relating to work in this article. A. S-M. and M.G. are co-founders of Integra Therapeutics S.L. B.P.K is an inventor on patents and/or patent applications filed by Mass General Brigham that describe genome engineering technologies. B.P.K. is a consultant for Avectas Inc., EcoR1 capital, and ElevateBio, and is an advisor to Acrigen Biosciences and Life Edit Therapeutics.

Jan 2, 2023

What hasn’t natural selection eliminated mental disorders?

Posted by in categories: biotech/medical, evolution, neuroscience

The College of Psychiatrists of Ireland Evolution and Psychiatry Special Interest Group welcomed Dr Randolph M Nesse to present a talk titled “Why hasn’t natural selection eliminated mental disorders: Knowing the five reasons improves clinical care as well as research” during their meeting on Friday, 4 February 2022.

The Special Interest Group is open to all College members and Psychiatry trainees.

Continue reading “What hasn’t natural selection eliminated mental disorders?” »

Jan 2, 2023

Primordial plasma from the Big Bang recreated in particle accelerator experiments

Posted by in categories: cosmology, evolution, particle physics

Year 2021 face_with_colon_three


“This [study] shows us the evolution of the QGP and eventually [could] suggest how the early universe evolved in the first microsecond after the Big Bang,” said co-author You Zhou, an associate professor at the Niels Bohr Institute, University of Copenhagen in Denmark in an official statement.

“First the plasma that consisted of quarks and gluons was separated by the hot expansion of the universe. Then the pieces of quark reformed into so-called hadrons. A hadron with three quarks makes a proton, which is part of atomic cores. These cores are the building blocks that constitutes earth, ourselves and the universe that surrounds us.”

Continue reading “Primordial plasma from the Big Bang recreated in particle accelerator experiments” »

Jan 2, 2023

Should We Seek Immortality?

Posted by in categories: evolution, food, life extension

Read the story: https://aperture.gg/blogs/the-universe/should-we-seek-immortality.
Merch: https://aperture.gg/merch.

Although we’ve been socialized to accept death as an inevitability, and live our lives knowing that its looming shadow will one day catch up with us, many of us might never really come to terms with it. Throughout our evolution, we’ve come up with ideas, beliefs and theories that attempt to shine a light deep into the cold, dark abyss of death to give ourselves a hope of continued living and everlasting existence. Could we really stop our cells from aging? If you could, would you want to be immortal?

Continue reading “Should We Seek Immortality?” »

Jan 1, 2023

Origin of NASA (National Aeronautics Space Agency)

Posted by in categories: cosmology, engineering, evolution

When it comes to achieving incredible feats of aerospace engineering, Exploring the wonders of the universe, And realizing the dreams of astronauts from around the world.

There’s one organization that stands above all others. This is the Evolution of NASA. In this article, we will cover the origins of NASA.

Dec 30, 2022

Chinese astronomers detect over 100 new open clusters

Posted by in categories: evolution, information science, space

By analyzing the data from ESA’s Gaia satellite, astronomers from the Shanghai Astronomical Observatory (SHAO) in China have detected 101 new open clusters in the Milky Way galaxy. The discovery was presented in a paper published December 21 on the arXiv pre-print repository.

Open clusters (OCs), formed from the same giant molecular cloud, are groups of stars loosely gravitationally bound to each other. So far, more than 1,000 of them have been discovered in the Milky Way, and scientists are still looking for more, hoping to find a variety of these stellar groupings. Studying them in detail could be crucial for improving our understanding of the formation and evolution of our galaxy.

Now, a team of led by SHAO’s Qin Songmei reports the finding of 101 new OCs in the solar neighborhood. The discovery is a result of utilizing clustering algorithms pyUPMASK and HDSBSCAN on the data from Gaia’s Data Release 3 (DR3).

Dec 30, 2022

Michael Levin: Anatomical decision-making

Posted by in categories: biotech/medical, evolution, information science, life extension, neuroscience

Anatomical decision-making by cellular collectives: Bioelectrical pattern memories, regeneration, and synthetic living organisms.

A key question for basic biology and regenerative medicine concerns the way in which evolution exploits physics toward adaptive form and function. While genomes specify the molecular hardware of cells, what algorithms enable cellular collectives to reliably build specific, complex, target morphologies? Our lab studies the way in which all cells, not just neurons, communicate as electrical networks that enable scaling of single-cell properties into collective intelligences that solve problems in anatomical feature space. By learning to read, interpret, and write bioelectrical information in vivo, we have identified some novel controls of growth and form that enable incredible plasticity and robustness in anatomical homeostasis. In this talk, I will describe the fundamental knowledge gaps with respect to anatomical plasticity and pattern control beyond emergence, and discuss our efforts to understand large-scale morphological control circuits. I will show examples in embryogenesis, regeneration, cancer, and synthetic living machines. I will also discuss the implications of this work for not only regenerative medicine, but also for fundamental understanding of the origin of bodyplans and the relationship between genomes and functional anatomy.

Dec 27, 2022

Coherent interaction-free detection of microwave pulses with a superconducting circuit Communications

Posted by in category: evolution

Interaction-free measurements typically use repeated interrogations of an object that suppress the coherent evolution of the system. Dogra et al. demonstrate in a superconducting circuit a novel protocol that employs coherent repeated interrogations, and show that it yields a higher detection probability.

Page 58 of 147First5556575859606162Last