Menu

Blog

Archive for the ‘evolution’ category: Page 49

Apr 12, 2023

Intelligence Explosion — Part 1/3

Posted by in categories: big data, computing, evolution, futurism, innovation, internet, machine learning, robotics/AI, singularity, supercomputing

The GPT phenomenon and the future of humanity in the face of advances in Artificial Intelligence.

The Age of Artificial Intelligence is an increasingly present reality in our daily lives. With the rise of technologies such as Natural Language Processing (NLP) and Artificial Neural Networks (ANN), the possibility of creating machines capable of performing tasks that were previously exclusive to humans has emerged.

One of these technologies is the Generative Pre-trained Transformer, better known as GPT. It’s the Large Language Model (LLM) developed by OpenAI.

OpenAI was founded in San Francisco, California in 2015 by Sam Altman, Reid Hoffman, Jessica Livingston, Elon Musk, Ilya Sutskever, Peter Thiel, among others, who collectively pledged $1 billion. Musk resigned from the board in 2018, but continued to be a donor to the project.

Continue reading “Intelligence Explosion — Part 1/3” »

Apr 12, 2023

Genomic study of ancient humans sheds light on human evolution on the Tibetan Plateau

Posted by in categories: biotech/medical, evolution

The Tibetan Plateau, the highest and largest plateau above sea level, is one of the harshest environments settled by humans. It has a cold and arid environment and its elevation often surpasses 4,000 meters above sea level (masl). The plateau covers a wide expanse of Asia—approximately 2.5 million square kilometers—and is home to over 7 million people, primarily belonging to the Tibetan and Sherpa ethnic groups.

However, our understanding of their origins and history on the plateau is patchy. Despite a rich archaeological context spanning the plateau, sampling of DNA from has been limited to a thin slice of the southwestern plateau in the Himalayas.

Now, a study published in Science Advances led by Prof. Fu Qiaomei from the Institute of Vertebrate Paleontology and Paleoanthropology (IVPP) of the Chinese Academy of Sciences has filled this gap by sequencing the genomes of 89 ancient humans dating back to 5,100 BP from 29 spanning the Tibetan Plateau.

Apr 12, 2023

Evidence found of possible interdomain horizontal gene transfer leading to development of the eye in vertebrates

Posted by in categories: biological, chemistry, evolution, genetics

A group of molecular and chemical biologists at the University of California, San Diego, has found possible evidence of interdomain horizontal gene transfer leading to the development of the eye in vertebrates. In their study, reported in Proceedings of the National Academy of Sciences, Chinmay Kalluraya, Alexander Weitzel, Brian Tsu and Matthew Daugherty used the IQ-TREE software program to trace the evolutionary history of genes associated with vision.

Ever since scientists proved that humans, along with other animals, developed due to , one problem has stood out—how could evolution possibly account for the development of something as complicated as the eyeball? Even Charles Darwin was said to be stumped by the question. In recent times, this seeming conundrum has been used by some groups as a means to discredit altogether. In this new effort, the team in California sought to answer the question once and for all.

Their work began with the idea that vision in vertebrates may have got its start by using light-sensitive genes transferred from microbes. To find out if that might be the case, the team submitted likely human gene candidates to the IQ-TREE program to look for similar genetic sequences in other creatures, most specifically, microbes.

Apr 12, 2023

Groundbreaking New Dark Matter Map Validates Einstein’s Theory of General Relativity

Posted by in categories: cosmology, evolution, physics

Research by the Atacama Cosmology Telescope collaboration has culminated in a significant breakthrough in understanding the evolution of the universe.

For millennia, humans have been fascinated by the mysteries of the cosmos.

Unlike ancient philosophers imagining the universe’s origins, modern cosmologists use quantitative tools to gain insights into its evolution and structure. Modern cosmology dates back to the early 20th century, with the development of Albert Einstein’s theory of general relativity.

Apr 11, 2023

Evolution and Development from Simple Animals to Humans via Ancestral Gene Networks

Posted by in categories: evolution, genetics

(Visit: http://www.uctv.tv/) Animal development is directed by a genetic toolkit shared by all animals — from fruit flies to frogs to human beings — rather than different animals having different genetic toolkits. UCLA Professor of Biological Chemistry Edward De Robertis explains that the field of evolutionary development (or Evo-Devo) seeks to understand how so many beautiful animal forms evolved through the use of the original genetic toolkit of the last common ancestor of all animals, urbilateria, which existed at least 560 million years ago. Recorded on 10.25.2016. Series: “UCLA Faculty Research Lectures” [12/2016] [Science] [Show ID: 31409].

Apr 11, 2023

Beyond DNA and RNA: The Expanding Toolbox of Synthetic Genetics

Posted by in categories: bioengineering, biotech/medical, chemistry, evolution, genetics, nanotechnology

The remarkable physicochemical properties of the natural nucleic acids, DNA and RNA, define modern biology at the molecular level and are widely believed to have been central to life’s origins. However, their ability to form repositories of information as well as functional structures such as ligands (aptamers) and catalysts (ribozymes/DNAzymes) is not unique. A range of nonnatural alternatives, collectively termed xeno nucleic acids (XNAs), are also capable of supporting genetic information storage and propagation as well as evolution. This gives rise to a new field of “synthetic genetics,” which seeks to expand the nucleic acid chemical toolbox for applications in both biotechnology and molecular medicine. In this review, we outline XNA polymerase and reverse transcriptase engineering as a key enabling technology and summarize the application of “synthetic genetics” to the development of aptamers, enzymes, and nanostructures.

Copyright © 2019 Cold Spring Harbor Laboratory Press; all rights reserved.

Apr 11, 2023

Evolution. Toward an alternative biology

Posted by in categories: biological, evolution

NCBI Literature Resources.

MeSH PMC Bookshelf Disclaimer.

The PubMed wordmark and PubMed logo are registered trademarks of the U.S. Department of Health and Human Services (HHS). Unauthorized use of these marks is strictly prohibited.

Apr 11, 2023

The origin of life: RNA and protein co-evolution on the ancient Earth

Posted by in categories: biotech/medical, chemistry, evolution, genetics

How life emerged from simple non-life chemicals on the ancient Earth is one of the greatest mysteries in biology. The gene expression system of extant life is based on the interdependence between multiple molecular species (DNA, RNA, and proteins). While DNA is mainly used as genetic material and proteins as functional molecules in modern biology, RNA serves as both genetic material and enzymes (ribozymes). Thus, the evolution of life may have begun with the birth of a ribozyme that replicated itself (the RNA world hypothesis), and proteins and DNA joined later. However, the complete self-replication of ribozymes from monomeric substrates has not yet been demonstrated experimentally, due to their limited activity and stability. In contrast, peptides are more chemically stable and are considered to have existed on the ancient Earth, leading to the hypothesis of RNA-peptide co-evolution from the very beginning. Our group and collaborators recently demonstrated that peptides with both hydrophobic and cationic moieties (e.g., KKVVVVVV) form β-amyloid aggregates that adsorb RNA and enhance RNA synthesis by an artificial RNA polymerase ribozyme and a simple peptide with only seven amino acid types (especially rich in valine and lysine) can fold into the ancient β-barrel conserved in various enzymes, including the core of cellular RNA polymerases. These findings, together with recent reports from other groups, suggest that simple prebiotic peptides could have supported the ancient RNA-based replication system, gradually folded into RNA-binding proteins, and eventually evolved into complex proteins like RNA polymerase.

Keywords: RNA world; ancient proteins; central dogma; origin of life; peptide.

© 2023 Japanese Society of Developmental Biologists.

Apr 11, 2023

RNA-Catalyzed Polymerization of Deoxyribose, Threose, and Arabinose Nucleic Acids

Posted by in categories: biotech/medical, evolution, genetics

An RNA-dependent RNA polymerase ribozyme that was highly optimized through in vitro evolution for the ability to copy a broad range of template sequences exhibits promiscuity toward other nucleic acids and nucleic acid analogues, including DNA, threose nucleic acid (TNA), and arabinose nucleic acid (ANA). By operating on various RNA templates, the ribozyme catalyzes multiple successive additions of DNA, TNA, or ANA monomers, although with reduced efficiency compared to RNA monomers. The ribozyme can also copy DNA or TNA templates to complementary RNAs, and to a lesser extent it can operate when both the template and product strands are composed of DNA, TNA, or ANA. These results suggest that polymerase ribozymes, which are thought to have replicated RNA genomes during the early history of life, could have transferred RNA-based genetic information to and from DNA, enabling the emergence of DNA genomes prior to the emergence of proteins. In addition, genetic systems based on nucleic acid-like molecules, which have been proposed as precursors or contemporaries of RNA-based life, could have been operated upon by a promiscuous polymerase ribozyme, thus enabling the evolutionary transition between early genetic systems.

Keywords: RNA world; XNA; origins of life; polymerase; reverse transcriptase; ribozyme.

Apr 11, 2023

Synthetic genetic polymers capable of heredity and evolution

Posted by in categories: biotech/medical, evolution, genetics

Genetic information storage and processing rely on just two polymers, DNA and RNA, yet whether their role reflects evolutionary history or fundamental functional constraints is currently unknown. With the use of polymerase evolution and design, we show that genetic information can be stored in and recovered from six alternative genetic polymers based on simple nucleic acid architectures not found in nature [xeno-nucleic acids (XNAs)]. We also select XNA aptamers, which bind their targets with high affinity and specificity, demonstrating that beyond heredity, specific XNAs have the capacity for Darwinian evolution and folding into defined structures. Thus, heredity and evolution, two hallmarks of life, are not limited to DNA and RNA but are likely to be emergent properties of polymers capable of information storage.

Page 49 of 147First4647484950515253Last