Toggle light / dark theme

The advent of quantum simulators in various platforms8,9,10,11,12,13,14 has opened a powerful experimental avenue towards answering the theoretical question of thermalization5,6, which seeks to reconcile the unitarity of quantum evolution with the emergence of statistical mechanics in constituent subsystems. A particularly interesting setting is that in which a quantum system is swept through a critical point15,16,17,18, as varying the sweep rate can allow for accessing markedly different paths through phase space and correspondingly distinct coarsening behaviour. Such effects have been theoretically predicted to cause deviations19,20,21,22 from the celebrated Kibble–Zurek (KZ) mechanism, which states that the correlation length ξ of the final state follows a universal power-law scaling with the ramp time tr (refs. 3, 23,24,25).

Whereas tremendous technical advancements in quantum simulators have enabled the observation of a wealth of thermalization-related phenomena26,27,28,29,30,31,32,33,34,35, the analogue nature of these systems has also imposed constraints on the experimental versatility. Studying thermalization dynamics necessitates state characterization beyond density–density correlations and preparation of initial states across the entire eigenspectrum, both of which are difficult without universal quantum control36. Although digital quantum processors are in principle suitable for such tasks, implementing Hamiltonian evolution requires a high number of digital gates, making large-scale Hamiltonian simulation infeasible under current gate errors.

In this work, we present a hybrid analogue–digital37,38 quantum simulator comprising 69 superconducting transmon qubits connected by tunable couplers in a two-dimensional (2D) lattice (Fig. 1a). The quantum simulator supports universal entangling gates with pairwise interaction between qubits, and high-fidelity analogue simulation of a U symmetric spin Hamiltonian when all couplers are activated at once. The low analogue evolution error, which was previously difficult to achieve with transmon qubits due to correlated cross-talk effects, is enabled by a new scalable calibration scheme (Fig. 1b). Using cross-entropy benchmarking (XEB)39, we demonstrate analogue performance that exceeds the simulation capacity of known classical algorithms at the full system size.

Matter in intergalactic space is distributed in a vast network of interconnected filamentary structures, collectively referred to as the cosmic web. With hundreds of hours of observations, an international team of researchers has now obtained an unprecedented high-definition image of a cosmic filament inside this web, connecting two active forming galaxies—dating back to when the universe was about 2 billion years old.

A pillar of modern cosmology is the existence of dark matter, which constitutes about 85% of all matter in the universe. Under the influence of gravity, dark matter forms an intricate cosmic web composed of filaments, at whose intersections the brightest galaxies emerge. This cosmic web acts as the scaffolding on which all visible structures in the universe are built: within the filaments, gas flows to fuel star formation in galaxies. Direct observations of the fuel supply of such galaxies would advance our understanding of galaxy formation and evolution.

However, studying the gas within this cosmic web is incredibly challenging. Intergalactic gas has been detected mainly indirectly through its absorption of light from bright background sources. But the observed results do not elucidate the distribution of this gas. Even the most abundant element, hydrogen, emits only a faint glow, making it basically impossible for instruments of the previous generation to directly observe such gas.

An international team of scientists has modeled the formation and evolution of the strongest magnetic fields in the universe.

Led by scientists from Newcastle University, University of Leeds and France, the paper was published in the journal Nature Astronomy. The researchers identified the Tayler-Spruit dynamo caused by the fall back of supernova material as a mechanism leading to the formation of low-field magnetars. This new work solves the mystery of low-field formation, which has puzzled scientists since low-field magnetar discovery in 2010.

The team used advanced numerical simulations to model the magneto-thermal evolution of these stars, finding that a specific dynamo process within the proto-neutron star can generate these weaker magnetic fields.

He has written five well received books on consciousness and developed the Global Neural Workspace model of Consciousness What follows bellow are some of Professor Baars’ observations, Questions (often rhetorical), Quotations, comments, reflections on career and his own theories and my comments (RS) to them as posted to LinkedIn platform. Bernard’s text is in italics. Comments to comments are indicated with ‘BB]’ and responses to those with ‘RS]’. ======== ======== ======== t aware of. ‘ +In the case of non-human animals, we have to get a little bit more creative. We have to decide what behaviors can be used similar sorts of markers as their own form of report.” — David Edelman RS] Or we could ask ~ “is the form of communication between animals sufficient for their needs?” and follow up with “is there Evolutionary Pressure for forms of communication beyond utility?” Those who follow discussion forums may appreciate that what takes an excited discussant 10 paragraphs and 1,000 flaming words can be achieved by a dog with a couple barks and the bearing of teeth ~ which is the more efficient communicative format? BB] Humans seem to have a larger repertoire of uses for consciousness — including language and longer-term planning, self-monitoring and self-reflection, inner speech, metaphor, symbolic representation of experience and deliberate use of imagery. When it comes to sensory consciousness, however, the brain shows little difference between humans and many other mammals. RS] Utility is the key ~ what are those faculties good for? Take them away, individually, and see what we end up with. As such surgical or other intervention is not a practical option we might turn to clinical conditions where patients have such deficits. We may look to Autism, where self reflection, especially in the social context, is lacking. Psychopathy, where there is no inner voice reflecting on social morals. Various other deficits leave individuals with greatly reduced capacity to strive in a community and so we may reflect on the many cognitive faculties we have that appear to have little if any use for the isolated individual. To test this we may examine those who were completely isolated for a significant period of their maturation. There have been cases of children lost in the forest (or dumped there) who survived. Without social stimulation some of heir faculties never matured ~ are these the same faculties that Bernard mentions above? BB] Perhaps half a second after you glance at a word on a page it is converted into a semantic code, to interpret its meaning, guided by the rules of grammar. Going from words to meaning requires a large, unconscious mental lexicon. The lexicon of educated speakers of English contains about 100,000 words. We can understand each one instantly, as soon as it is shown in a sentence that makes sense. Words are complicated things! The OxfordEnglish Dictionary, for example, devotes 75,000 words to clarifying the many different meanings of the word set. RS] The way words are interpreted gives us insight into the how the brain works. If approached in the follow manner we can see what is happening: For each noun there is a denotation and a connotation (the cold dictionary definition and the feeling the word evokes eg ‘Home’). There is a stand alone and contextual meaning of a word that may differ significantly eg “child” and “What are parent-child tree structures in SQL?” The ‘connotation’ is used by the brain to link words into sentences more so than the denotation. If there is a universal background language in the brain, then, it would be based on connotation, not denotation. Why? Because the connotation is innate already and words are appended to pre-existing ‘connotation’ made up of emotion, drives, feelings of all kinds. Watch a child as they acquire their first words ~ they at first use all kinds of signals to convey their intent, their intent is made up of drives, cravings, feelings etc and these become the connotations behind the words they eventually use. s BB] How does the metaphor of a theater help us think about consciousness? RS] The key to many of these approaches, and possible the downfall of at least some of them, is ‘evolvability’. We assume, from our own intuitive experience and logical deduction, that there must be a primary central control. This is a ‘top-down’ approach. But evolution must, by necessity, be ‘bottom-up’. Thus we would expect even the simplest ganglion to have at least some of the properties of consciousness in its own right. Snakes that must rely on different ‘consciousnesses’ for various functions, for instance the pursuing of prey, the killing of prey and the eating of the prey all come from processes so separate that if a mouse after a poisonous bite staggers around and ends up under the snake’s nose the snake will follow the scent trail until it ends up at the mouse, the visual and feeding systems not being able to share information. That system is evolvable, the top-down, apart from religious models, is not evolvable. Thus instead of a separate central process looking down at the senses we consider how the senses and other contributors to cognition swirl together like the funnel of a tornado to form a central consciousness that, in reality, has no independent neural underpinnings of its own due to its emergent nature. Note that ‘life’ also has this nature in that life exists when a collection of chemical reactions ‘swirl’ together, principally in a negative feedback driven homeostatic process, which is most probably also what consciousness actually is… And so we observe how the tornado’s funnel moves around the possible contributors, the audience in the analogy given, rather than a separate process that looks at individual members of the audience. Note that the separate process must consume the information on offer and process it, a ‘infinite regress’ with no end. But the swirling tornado, so to speak, is its own end and does not require any subsequent processes or processing… Note also that any collection of neurons, brain modules or even collections or communities of people can initiate this process.


This link will take you to a page that’s not on LinkedIn.

Dive into the captivating realm of Biopunk Science Fiction in our latest video! 🌱 Discover what Biopunk is, from genetic engineering to human augmentation, and explore the ethical dilemmas it presents in our modern world. We’ll discuss its evolution through literature and film, touching on iconic works like \.

Treating hair loss may be as simple as developing therapies to flip a molecular “switch,” according to a new study by researchers from Penn State; the University of California, Irvine; and National Taiwan University.

The researchers reviewed the biological and social evolution of human scalp hair. Based on their analysis, they proposed a novel theory that points to a molecular basis underlying the ability to grow long scalp hair.

In short, human ancestors may have always had the ability to grow long scalp hair, but the trait remained dormant until certain environmental and biological conditions — like walking upright on two legs — turned on the molecular program. The team published their findings, which they said could serve as the basis for future experimental work, in the British Journal of Dermatology.

New observations from the National Science Foundation National Radio Astronomy Observatory’s (NSF NRAO) Karl G. Jansky Very Large Array (NSF VLA) provide compelling evidence supporting a universal mechanism for the collimation of astrophysical jets, regardless of their origin.

The new study, published in The Astrophysical Journal Letters, reveals the presence of a helical magnetic field within the HH 80–81 protostellar jet, a finding that mirrors similar structures observed in jets emanating from supermassive black holes.

Jets, powerful, highly collimated outflows of matter and energy, are observed across a vast range of scales in the universe. From the supermassive black holes at the centers of galaxies to the young stars in our own Milky Way, these jets play a crucial role in the evolution of their host systems. However, the precise mechanism that guides these jets and prevents them from dispersing into space has remained a long-standing puzzle.

Could tiny grains from asteroid Bennu unlock the secrets of life in our solar system?


Does life exist beyond Earth and have the building blocks of life existed in our solar system for billions of years? This is what a recent study published in Nature Astronomy hopes to address as a team of international researchers analyzed dust samples obtained from the asteroid Bennu, which is hypothesized to have broken off from a larger parent body, to ascertain if it contains the building blocks of life as we know it. This study has the potential to help scientists better understand the early conditions of the solar system, along with the formation and evolution of the planets and moons that comprise it, as well.

For the study, the researchers used a transmission electron microscope at Goethe University to analyze grains that were part of the 122 grams (0.27 pounds) of dust samples returned to Earth by NASA’s OSIRIS-REx mission in September 2024. The goal of the study was to ascertain what components comprise Bennu, which existed since the early days of the solar system more than 4 billion years ago.

In the end, the researchers identified greater amounts of nitrogen, carbon, and ammonia than were obtained from asteroid Ryugu by Japan’s Hayabusa2 spacecraft in 2020. Additionally, this study identified 14 of the 20 amino acids that comprise Earth-based biology, along with all five nucelobases that comprise DNA and RNA. These findings indicate that the building blocks of life potentially existed in the solar system billions of years ago and could comprise some of the planetary bodies of astrobiological interest today, including Saturn’s moon Enceladus and dwarf planet Ceres.

MIT physicists, in collaboration with colleagues, have measured the geometry—or shape—of electrons in solids at the quantum level for the first time. GOOD. Ask the MIT physicists: 1. What is the physical reality of quantum physics? 2. How is your quantum level defined? 3. What is the spacetime background of your quantum level?

What one researcher see or touch about an elephant will be different, and what different researchers see or touch will be even more different. It is a scientific phenomenon, not the essence of nature. Scientific research guided by correct theories can enable researchers to think more.

According to the Topological Vortex Theory (TVT), spins create everything, spins shape the world. There are substantial distinctions between Topological Vortex Theory (TVT) and traditional physical theories. Grounded in the inviscid and absolutely incompressible spaces, TVT introduces the concept of topological phase transitions and employs topological principles to elucidate the formation and evolution of matter in the universe, as well as the impact of interactions between topological vortices and anti-vortices on spacetime dynamics and thermodynamics.