Menu

Blog

Archive for the ‘evolution’ category: Page 2

Oct 13, 2024

Organic Matter on Mars was formed from Atmospheric Formaldehyde

Posted by in categories: alien life, chemistry, evolution

Researchers have developed a Martian atmospheric evolution model to propose a new theory about Mars’s past. Although Mars is currently a cold, dry planet, geological evidence suggests that liquid water existed there around 3 to 4 billion years ago. Where there is water, there is usually life. In their quest to answer the burning question about life on Mars, researchers at Tohoku University created a detailed model of organic matter production in the ancient Martian atmosphere.

Organic matter refers to the remains of living things such as plants and animals, or the byproduct of certain chemical reactions.

Whatever the case, the stable carbon isotope ratio (13C/12C) found in organic matter provides valuable clues about how these building blocks of life were originally formed, giving scientists a window into the past.

Oct 13, 2024

Evolution in real time: Scientists predict—and witness—evolution in a 30-year marine snail experiment

Posted by in category: evolution

Snails on a tiny rocky islet evolved before scientists’ eyes. The marine snails were reintroduced after a toxic algal bloom wiped them out from the skerry. While the researchers intentionally brought in a distinct population of the same snail species, these evolved to strikingly resemble the population lost over 30 years prior.

Oct 13, 2024

Diverse life forms from 800 million years ago redefine evolution

Posted by in category: evolution

Study uncovered evidence of diverse species living 800 million years ago, revealing early evolution and suggesting life diversified earlier.

Oct 9, 2024

The Habitable Mars? Examining Isotopes in Gale Crater

Posted by in categories: climatology, evolution, space

“The isotope values of these carbonates point toward extreme amounts of evaporation, suggesting that these carbonates likely formed in a climate that could only support transient liquid water,” said Dr. David Burtt.


Was the planet Mars ever habitable and what conditions led to it becoming the uninhabitable world we see today? This is what a recent study published in the Proceedings of the National Academy of Sciences hopes to address as a team of researchers from the United States and Canada investigated how carbonate minerals found within Gale Crater on Mars could help paint a clearer picture of past conditions on the Red Planet and whether it was habitable. This study holds the potential to help scientists better understand the formation and evolution of Mars and whether it once had the necessary conditions to support life as we know it.

Studying carbonate minerals is important due to their ability to tell scientists how a climate formed and evolved over time, with these carbonate minerals containing large amounts of carbon and oxygen isotopes, specifically Carbon-13 and Oxygen-18, which the study notes is the highest amount of these isotopes identified on the Red Planet. Carbon-13 and Oxygen-18 are known as environmental isotopes, which are used to better understand the interactions between a planet’s ocean and atmosphere and how life could exist. While Earth is the only known planet to support life, studying these isotopes on Mars could help scientists better understand if life could have formed on Mars long ago.

Continue reading “The Habitable Mars? Examining Isotopes in Gale Crater” »

Oct 8, 2024

Infrared Single-Photon Detector for Astronomy

Posted by in categories: cosmology, evolution, physics

An infrared detector is sensitive to a wide range of intensities and could potentially pick up biomarkers from exoplanet atmospheres.

Many areas of astrophysics, cosmology, and exoplanet research would benefit from a highly sensitive and stable detector for light at wavelengths in the 10–100 µm range. Now researchers report building a detector that operates at 25 µm and that is suitable for hours-long operation in a telescope pointed at faint sources [1]. The device exploits the extreme sensitivity to light of a superconducting material patterned into a miniature photo-absorptive structure. The researchers expect that the design will find use in space telescopes launched in the next few years.

Light at wavelengths in the range 10–100 µm may carry crucial spectroscopic clues about biogenic gases in exoplanet atmospheres and could also help astrophysicists pin down details of early planetary formation and galactic evolution. Yet building detectors for this range of wavelengths is challenging for several reasons, says astrophysicist Peter Day of the California Institute of Technology (Caltech). Because the light from these sources is so faint, the detector has to perform stably over many hours of observation. Each pixel of the detector has to be capable of registering single photons yet also be accurate for sources as much as 100,000 times brighter than the faintest detectable source. The detector must also have an efficient way to read out information rapidly from thousands of identical pixels.

Oct 7, 2024

How Ceres Challenges Our Understanding of Icy Bodies

Posted by in categories: evolution, space

Ian Pamerleau: “We used multiple observations made with Dawn data as motivation for finding an ice-rich crust that resisted crater relaxation on Ceres. Different surface features (e.g., pits, domes and landslides, etc.) suggest the near subsurface of Ceres contains a lot of ice.”


Was the dwarf planet Ceres once an ocean world like Europa and Enceladus? If so, how did it become the cratered and icy world we see today? This is what a recent study published in Nature Astronomy hopes to address as a team of researchers from Purdue University and NASA’s Jet Propulsion Laboratory (JPL) investigated the formation and evolution of the internal geological processes of Ceres and how this could help scientists better understand ocean worlds throughout the solar system.

“We think that there’s lots of water-ice near Ceres surface, and that it gets gradually less icy as you go deeper and deeper,” said Dr. Mike Sori, who is an assistant professor in the Department of Earth, Atmospheric, and Planetary Sciences at Purdue University and a co-author on the study. “People used to think that if Ceres was very icy, the craters would deform quickly over time, like glaciers flowing on Earth, or like gooey flowing honey. However, we’ve shown through our simulations that ice can be much stronger in conditions on Ceres than previously predicted if you mix in just a little bit of solid rock.”

Continue reading “How Ceres Challenges Our Understanding of Icy Bodies” »

Oct 7, 2024

It’s Just an Anomaly: New Study Challenges Decades-Old Theory of Rapid Evolution

Posted by in categories: asteroid/comet impacts, evolution, existential risks

For decades, researchers have noticed that the pace of evolution tends to speed up over shorter time frames, such as five million years compared to fifty million years. This general trend indicates that “younger” groups of organisms, in evolutionary terms, tend to exhibit higher rates of speciation, extinction, and body size evolution, among other differences from older groups.

Evolutionary processes appear to operate at different time scales, perhaps necessitating the need for a new theory linking microevolution and macroevolution. The larger question has tantalized scientists: why?

There are plausible explanations. A new species may inhabit a new island chain, allowing for more variation as it spreads into new niches. An asteroid may hit the earth, increasing extinction rates. Perhaps species evolve to an “optimal” trait value and then plateau.

Oct 4, 2024

Study suggests statistical ‘noise’ affects perceived evolutionary rates

Posted by in categories: evolution, existential risks

For decades, researchers have observed that rates of evolution seem to accelerate over short time periods—say five million years versus fifty million years. This broad pattern has suggested that “younger” groups of organisms, in evolutionary terms, have higher rates of speciation, extinction and body size evolution, among other differences from older ones.

Oct 2, 2024

Webb Telescope Unveils New Chemical Insights on Pluto’s Moon Charon

Posted by in categories: chemistry, evolution, particle physics, space

What secrets can Pluto’s moon, Charon, reveal about the formation and evolution of planetary bodies throughout the solar system? This is what a recent study published in Nature Communications hopes to address as an international team of researchers led by the Southwest Research Institute (SwRI) used NASA’s James Webb Space Telescope (JWST) to conduct the first-time detection of hydrogen peroxide and carbon dioxide on Charon’s surface, which adds further intrigue to this mysterious moon, along with complementing previous discoveries of water ice, ammonia-bearing species, and organic materials, the last of which scientists hypothesize could explain Charon’s gray and red surface colors.

“The advanced observational capabilities of Webb enabled our team to explore the light scattered from Charon’s surface at longer wavelengths than what was previously possible, expanding our understanding of the complexity of this fascinating object,” said Dr. Ian Wong, who is a staff scientist at the Space Telescope Science Institute and a co-author on the study.

Detecting hydrogen peroxide is significant since it forms from the broken-up oxygen and hydrogen atoms after water ice is exposed to cosmic rays, solar wind, or solar ultraviolet light. This indicates that the Sun’s activity influences surface processes so far away, with Charon being approximately 3.7 billion miles from the Sun. The researchers determined that Charon’s carbon dioxide serves as a light coating on Charon’s water-ice heavy surface. While the surface of Charon was studied in-depth from NASA’s New Horizons mission in 2015, these new findings provide greater understanding of the physics-based processes responsible for Charon’s unique surface features.

Sep 30, 2024

Quantum sensing approach captures nanoscale electrochemical evolution in battery

Posted by in categories: chemistry, evolution, nanotechnology, particle physics, quantum physics

Battery performance is heavily influenced by the non-uniformity and failure of individual electrode particles. Understanding the reaction mechanisms and failure modes at nanoscale level is key to advancing battery technologies and extending their lifespan. However, capturing real-time electrochemical evolution at this scale remains challenging due to the limitations of existing sensing methods, which lack the necessary spatial resolution and sensitivity.

Page 2 of 14712345678Last