Toggle light / dark theme

Imagine doctors being able to predict how a disease might progress in your body based on your genetic makeup, or which treatments would be most effective for you.

This research could bring us one step closer to that reality.

To sum it all up, this new research is shaking up how we think about evolution. Instead of seeing it as a series of random events, the study suggests there’s a level of predictability influenced by gene families and genetic history.

Researchers have discovered the most distant Milky-Way-like galaxy yet observed. Dubbed REBELS-25, this disc galaxy seems as orderly as present-day galaxies, but we see it as it was when the Universe was only 700 million years old. This is surprising since, according to our current understanding of galaxy formation, such early galaxies are expected to appear more chaotic. The rotation and structure of REBELS-25 were revealed using the Atacama Large Millimeter/submillimeter Array (ALMA), in which the European Southern Observatory (ESO) is a partner.

The galaxies we see today have come a long way from their chaotic, clumpy counterparts that astronomers typically observe in the early Universe. “According to our understanding of galaxy formation, we expect most early galaxies to be small and messy looking,” says Jacqueline Hodge, an astronomer at Leiden University, the Netherlands, and co-author of the study.

These messy, early galaxies merge with each other and then evolve into smoother shapes at an incredibly slow pace. Current theories suggest that, for a galaxy to be as orderly as our own Milky Way – a rotating disc with tidy structures like spiral arms – billions of years of evolution must have elapsed. The detection of REBELS-25, however, challenges that timescale.

Black holes are some of the most mysterious and awe-inspiring celestial objects in science, and while pairs of black holes or a black hole orbiting another object like a star, known as binary black holes, have been confirmed to exist, what about triple systems? This is what a recent study published in Nature hopes to address as a team of researchers from the Massachusetts Institute of Technology (MIT) and the California Institute of Technology (Caltech) announced the discovery of a “black hole triple”, meaning three black holes are orbiting each other simultaneously. This study holds the potential to help researchers better understand the formation and evolution of black holes and what this can teach us about the universe, overall.

For the study, the researchers examined the binary black hole system V404 Cygni, which consists of a central black hole being orbited by two stars, with one orbiting in 6.5 days while the other takes approximately 70,000 years to complete one orbit. It is this second object that has scientists scratching their heads, as it is confounding how an object so far away can be influenced by a black hole’s gravity. While black holes are often created from a supernova, or the collapse and explosion of a large star, this means the explosion should have pushed away the farther star in this system. Therefore, the team postulates this black hole was formed by what’s known as a “direct collapse”, which is a smaller and gentler process when a star collapses in on itself as opposed to producing an outward explosion.

“We think most black holes form from violent explosions of stars, but this discovery helps call that into question,” said Dr. Kevin Burdge, who is a Pappalardo Fellow in the MIT Department of Physics and lead author of the study. “This system is super exciting for black hole evolution, and it also raises questions of whether there are more triples out there.”

Inspired by the half-human, half-horse creatures that are part of Ancient Greek mythology, the field of astronomy has its own kind of centaurs: distant objects orbiting the sun between Jupiter and Neptune. NASA’s James Webb Space Telescope has mapped the gases spewing from one of these objects, suggesting a varied composition and providing new insights into the formation and evolution of the solar system.

Centaurs are former trans-Neptunian objects that have been moved inside Neptune’s orbit by subtle gravitational influences of the planets in the last few million years, and may eventually become short-period comets. They are “hybrid” in the sense that they are in a transitional stage of their orbital evolution: Many share characteristics with both trans-Neptunian objects (from the cold Kuiper Belt reservoir), and short-period comets, which are objects highly altered by repeated close passages around the sun.

Since these small icy bodies are in an orbital transitional phase, they have been the subject of various studies as scientists seek to understand their composition, the reasons behind their outgassing activity—the loss of their ices that lie underneath the surface—and how they serve as a link between primordial icy bodies in the outer solar system and evolved comets.

Every cell is beholden to a phenomenon called cell fate, a sort of biological preset determined by genetic coding. Burgeoning cells take their developmental cues from a set of core genetic instructions that shape their structure and function and how they interact with other cells in the body.

To you or me, it’s biological law. But to a group of researchers at Stanford Medicine, it’s more of a suggestion. Unconstrained by the rules of evolution, these scientists are instead governed by a question: What if?

What if you could eat a vaccine? Or create a bacterium that could also detect and attack cancer? What if furniture could grow from a seed?

The human brain’s remarkably prolonged development is unique among mammals and is thought to contribute to our advanced learning abilities. Disruptions in this process may explain certain neurodevelopmental diseases.

Now, a team of researchers led by Prof. Pierre Vanderhaeghen (VIB-KU Leuven), together with scientists of Columbia University and Ecole Normale Supérieure has discovered a link between two genes, present only in human DNA, and a key gene called SYNGAP1, which is mutated in intellectual disability and .

Their study, published in Neuron, provides a surprisingly direct link between human brain evolution and neurodevelopmental disorders.

Scientists found living microbes in a 2-billion-year-old rock in South Africa, providing insights into early life on Earth and potentially aiding the search for life on Mars.

Researchers have discovered pockets of living microbes within a sealed fracture of a 2-billion-year-old rock from the Bushveld Igneous Complex in South Africa, an area known for its rich ore deposits. This is the oldest example of living microbes found within ancient rock to date.

To confirm that the microbes were indigenous to the ancient core sample and not caused by contamination during the retrieval and study process, the research team refined a technique they previously developed involving three types of imaging – infrared spectroscopy, electron microscopy, and fluorescent microscopy. These microbes could provide novel insights into the early evolution of life, and aid the search for extraterrestrial life in similarly aged rock samples brought back from Mars.