Toggle light / dark theme

New MIT Tech Could Cut Oil Refining Energy by 90%

Turning crude oil into everyday fuels like gasoline, diesel, and heating oil demands a huge amount of energy. In fact, this process is responsible for about 6 percent of the world’s carbon dioxide emissions. Most of that energy is spent heating the oil to separate its components based on their boiling points.

Now, in an exciting breakthrough, engineers at MIT have created a new kind of membrane that could change the game. Instead of using heat, this innovative membrane separates crude oil by filtering its components based on their molecular size.

“This is a whole new way of envisioning a separation process. Instead of boiling mixtures to purify them, why not separate components based on shape and size? The key innovation is that the filters we developed can separate very small molecules at an atomistic length scale,” says Zachary P. Smith, an associate professor of chemical engineering at MIT and the senior author of the new study.

They Created Tattoos That Track You Without a Device

Imagine getting a tattoo… that can track your health, location, or identity — and you don’t even need a device. Sounds like sci-fi? It’s real. Scientists have developed futuristic electronic tattoos that use special ink to monitor your body in real-time — from heart rate to hydration — and even transmit data without chips or batteries. But here’s the catch… could this breakthrough be the future of medicine? Or is it a step too close to surveillance under your skin?

Let’s explore how these tattoos work, what they can really do, and the wild implications they might have for your health — and your privacy.

🔔 Subscribe now for more mind-blowing science and tech stories!

Credit:
ScienceVio / YouTube.
Seeker / YouTube.
CUHK Engineering / YouTube.
NewsNation / YouTube.

Animation is created by Bright Side.

Music from TheSoul Sound: https://thesoul-sound.com/

When less is more: How inhibition shapes learning and spatial memory formation

Nuri Jeong remembers the feeling of surprise she felt during a trip back to South Korea, while visiting her grandmother, who’d been grappling with Alzheimer’s disease.

“I hadn’t seen her in six years, but she recognized me,” said Jeong, a former graduate researcher in the lab of Annabelle Singer in the Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University.

“I didn’t expect that. Even though my grandmother struggled to remember other family members that she saw all the time, she somehow remembered me,” Jeong added. “It made me wonder how the brain distinguishes between familiar and new experiences.”

Redefining physics to roll a ball vertically

Researchers from the University of Waterloo have achieved a feat previously thought to be impossible—getting a sphere to roll down a totally vertical surface without applying any external force.

The spontaneous rolling motion, captured by high-speed cameras, was an unexpected observation after months of trial, error, and theoretical calculations by two Waterloo research teams.

“When we first saw it happening, we were frankly in disbelief,” said Dr. Sushanta Mitra, a professor of mechanical and mechatronics engineering and executive director of the Waterloo Institute for Nanotechnology.

Customizable chips mimic real-life blood vessel structures for disease research

Blood vessels are like big-city highways; full of curves, branches, merges, and congestion. Yet for years, lab models replicated vessels like straight, simple roads.

To better capture the complex architecture of real human , researchers in the Department of Biomedical Engineering at Texas A&M University have developed a customizable vessel-chip method, enabling more accurate vascular disease research and a drug discovery platform.

Vessel-chips are engineered microfluidic devices that mimic human vasculature on a microscopic scale. These chips can be patient-specific and provide a non-animal method for pharmaceutical testing and studying . Jennifer Lee, a biomedical engineering master’s student, joined Dr. Abhishek Jain’s lab and designed an advanced vessel-chip that could replicate real variations in vascular structure.

A new method to generate muons with ultra-short high-intensity lasers

Muons are elementary particles that resemble electrons, but they are heavier and decay very rapidly (i.e., in just a few microseconds). Studying muons can help to test and refine the standard of particle physics, while also potentially unveiling new phenomena or effects.

So far, the generation of muons in experimental settings has been primarily achieved using proton accelerators, which are large and expensive instruments. Muons can also originate from , rays of high-energy particles originating from outer space that can collide with atoms in the Earth’s atmosphere, producing muons and other secondary particles.

Researchers at the China Academy of Engineering Physics (CAEP), Guangdong Laboratory, the Chinese Academy of Sciences (CAS) and other institutes recently introduced a new method to produce muons in experimental settings, using an ultra-short high-intensity laser.

Scientists test real-time view of brain’s waste removal with new monitoring device

A new device that monitors the waste-removal system of the brain may help to prevent Alzheimer’s and other neurological diseases, according to a study published today in Nature Biomedical Engineering.

In the study, participants were asleep when they wore the device: a head cap embedded with electrodes that measures shifts in fluid within , the from sleep to wakefulness and changes in the brain’s blood vessels.

By measuring these three features, the researchers found they could monitor the brain’s glymphatic system, which acts as a waste-removal and nutrient-delivery system.

Phonon decoupling in naturally occurring mineral enables subatomic ferroelectric memory

A research team has discovered ferroelectric phenomena occurring at a subatomic scale in the natural mineral brownmillerite.

The team was led by Prof. Si-Young Choi from the Department of Materials Science and Engineering and the Department of Semiconductor Engineering at POSTECH (Pohang University of Science and Technology), in collaboration with Prof. Jae-Kwang Lee’s team from Pusan National University, as well as Prof. Woo-Seok Choi’s team from Sungkyunkwan University. The work appears in Nature Materials.

Electronic devices store data in memory units called domains, whose minimum size limits the density of stored information. However, ferroelectric-based memory has been facing challenges in minimizing domain size due to the collective nature of atomic vibrations.

Novel blood purification technique eliminates antibiotic-resistant bacteria via artificial clots

A research team affiliated with UNIST has unveiled a novel extracorporeal blood purification technology that captures and removes bacteria from the bloodstream by leveraging sticky, clot-like surfaces. This breakthrough could pave the way for new treatments against deadly systemic infections, including sepsis, even those caused by antibiotic-resistant bacteria. The work is published in Advanced Science.

Led by Professor Joo H. Kang, from the Department of Biomedical Engineering at UNIST, the research team announced the development of an innovative extracorporeal bacterial purification device that utilizes artificial blood clots. Similar to dialysis, the technique involves extracting infected blood outside the body, adsorbing bacteria onto artificial thrombi, and then returning the purified blood to the patient.

The newly developed extracorporeal blood purification device (eCDTF) features a spiral structure inserted into the central tube. Inside this spiral, artificial blood clots are embedded, which attract and trap bacteria flowing through the tube. Composed solely of without any cellular components like , these artificial thrombi facilitate effective bacterial adhesion to the device’s surface.