Toggle light / dark theme

Tissue engineering and Stem cells are a large part of the rejuvenation biotechnology toolkit. Here we have yet more progress and this time the pacemaker cells are replicated for possible use in biological pacemaker therapies.

“Scientists from the McEwen Centre for Regenerative Medicine, University Health Network, have developed the first functional pacemaker cells from human stem cells, paving the way for alternate, biological pacemaker therapy.”

Read more

From navigating turbulence, to sleeping midflight, to soaring without a sound, animals’ flight adaptations are helping scientists design better flying robots.

Airborne drones and the animals they mimic are featured in 18 new studies published online Dec. 15 in the journal Interface Focus. This special issue is intended “to inspire development of new aerial robots and to show the current status of animal flight studies,” said the issue’s editor, David Lentink, an assistant professor of mechanical engineering at Stanford University in California.

Though humans have been building flying machines since the 18th century, these new studies revealed that there is still much to be learned from looking closely at how birds, insects and bats take flight, keep themselves aloft and maneuver to safe landings. [Biomimicry: 7 Clever Technologies Inspired by Nature].

Read more

Research subjects at the University of Minnesota fitted with a specialized noninvasive EEG brain cap were able to move a robotic arm in three dimensions just by imagining moving their own arms (credit: University of Minnesota College of Science and Engineering)

Researchers at the University of Minnesota have achieved a “major breakthrough” that allows people to control a robotic arm in three dimensions, using only their minds. The research has the potential to help millions of people who are paralyzed or have neurodegenerative diseases.

The open-access study is published online today in Scientific Reports, a Nature research journal.

Read more

Those “sell by” or “best by” dates that you see on food packaging? They’re so last century. In the future, built-in sensors in food labels will not only tell you when a product is going bad but also if you’re storing it correctly. Some might even be able to give you a breakdown of its nutritional data. All this is thanks to developments in the burgeoning world of printable electronics. Now researchers at MIT have invented a printing process that could turn a lot of the potential breakthroughs, such as electricity-generating clothing and smart sutures we’ve been seeing in this space, into an inexpensive reality.

“There is a huge need for printing of electronic devices that are extremely inexpensive but provide simple computations and interactive functions,” says A. John Hart, an associate professor in contemporary technology and mechanical engineering.

While some researchers have been studying the possibility of using inkjet printing and rubber stamping, these techniques have produced mixed results at best, often resulting in fuzzy, coffee-ring patterns or incomplete circuits due to the difficulty of controlling ink flow at such small scales.

Read more

Hmmmm.


Sam Gussman arrived four years ago at Stanford University hoping to eventually parlay an engineering degree into a product manager job at Google or Facebook.

Working for the National Security Agency or other intelligence bureaus never crossed his mind. For Gussman, the government didn’t seem like the place for the most exciting, cutting-edge research in human computer interaction — his area of interest. Plus, it did no on-campus recruiting, unlike the many tech startups that e-mailed him daily about job opportunities and happy hours.

That career plan changed dramatically after Gussman took a new graduate class at Stanford’s engineering school called Hacking for Defense, or H4D, where he got to tackle real-life national security challenges. There he met with U.S. military officers and studied the mental duress soldiers face during combat and then worked on software that distinguishes insurgents from civilians in video feeds from drones. Suddenly government work was “super cool.”

Read more

Fun stuff

http://www.paintsquare.com/news/?fuseaction=view&id=15868&


Mood rings may have been a fleeting fad of the 1970s, but researchers at Vanderbilt University are using the basic concept as a means of detecting damage in failing infrastructure before it becomes critical.

An interdisciplinary research team at Vanderbilt’s Laboratory for Systems Integrity and Reliability (LASIR) is credited with developing the new sensing system, which incorporates nanoparticles in a clear polymer resin, the school announced Nov. 21.

The end result is “a smart material that changes color when it is damaged or about to fail, what I call a ‘mood ring material,’” explains civil engineering doctoral student Cole Brubaker.

Led by Nikolay Kandul, senior postdoctoral scholar in biology and biological engineering in the laboratory of Professor of Biology Bruce Hay, the team developed a technique to remove mutated DNA from mitochondria, the small organelles that produce most of the chemical energy within a cell. A paper describing the research appears in the November 14 issue of Nature Communications. There are hundreds to thousands of mitochondria per cell, each of which carries its own small circular DNA genome, called mtDNA, the products of which are required for energy production. Because mtDNA has limited repair abilities, normal and mutant versions of mtDNA are often found in the same cell, a condition known as heteroplasmy.

Read more

This is a nice vid but there are two things to note.

1. he does not mention Callisto in place of Europa. Europa gets enough radiation to kill you in a day where on Callisto you would not even get the radiation you get here on Earth.

2. It might be possible to puff up a given asteroid by creating a cylinder within as he points out, but filling it with water and then heating it from outside and once it’s molten the water will expand and blow the asteroid to a larger size. It may be possible to turn a 1 mile wide asteroid into a ten mile wide habitat. I do not know how well it scales up to larger asteroids.


This episode continues our team up with Fraser Cain to look at Colonizing the Solar System, we move from the inner solar system to the Asteroid Belt and beyond, all the way out to the Oort Cloud.

Part 1: The Inner Solar System, can be watched here:

I said over a year ago that if the US will not do it China will. Whilst there was talk about a moratorium on CRISPR in the US the Chinese were forging ahead and taking steps to become a world leader in biotech. Well here we are, they have deployed CRISPR in humans for cancer and this is only the start. As George Church advocates, we should have appropriate engineering safety measures in place but we should push ahead and do these things.


The move by Chinese scientists could spark a biomedical duel between China and the United States.

Read more