Menu

Blog

Archive for the ‘engineering’ category: Page 136

Apr 22, 2019

Defying the laws of physics? Engineers demonstrate bubbles of sand

Posted by in categories: engineering, particle physics

The flow of granular materials, such as sand and catalytic particles used in chemical reactors, and enables a wide range of natural phenomena, from mudslides to volcanos, as well as a broad array of industrial processes, from pharmaceutical production to carbon capture. While the motion and mixing of granular matter often display striking similarities to liquids, as in moving sand dunes, avalanches, and quicksand, the physics underlying granular flows is not as well-understood as liquid flows.

Now, a recent discovery by Chris Boyce, assistant professor of chemical engineering at Columbia Engineering, explains a new family of gravitational instabilities in granular particles of different densities that are driven by a gas-channeling mechanism not seen in fluids. In collaboration with Energy and Engineering Science Professor Christoph Müller’s group at ETH Zurich, Boyce’s team observed an unexpected Rayleigh-Taylor (R-T)-like instability in which lighter grains rise through heavier grains in the form of “fingers” and “granular bubbles.” R-T instabilities, which are produced by the interactions of two fluids of different densities that do not mix—oil and water, for example—because the lighter fluid pushes aside the heavier one, have not been seen between two dry granular materials.

The study, published today in the Proceedings of the National Academy of Sciences, is the first to demonstrate that “bubbles” of lighter sand form and rise through heavier sand when the two types of sand are subject to vertical vibration and upward gas , similar to the bubbles that form and rise in lava lamps. The team found that, just as air and oil bubbles rise in water because they are lighter than water and do not want to mix with it, bubbles of light sand rise through heavier sand even though two types of sand like to mix.

Continue reading “Defying the laws of physics? Engineers demonstrate bubbles of sand” »

Apr 22, 2019

Stunning new material invented in Turkey: “Metallic wood” is 5 times stronger than titanium, but lighter

Posted by in categories: engineering, nanotechnology, particle physics

(Natural News) Turkish inventors have created a new building material that is five times stronger than titanium and has the density of wood planks. Most remarkably, this new “Metallic wood” is lighter than titanium and still has the chemical stability of metal for use in manufacturing applications.

The new material is made out of nickel-based cellular materials as small as 17 nano-meters in diameter. These electroplated nickel nano-particles are strategically arranged in struts to maximize their load-bearing strength as a whole. This strategic arrangement of nickel makes the material four times stronger than bulk nickel plating. By tinkering with nano-meter-scale geometry, the inventors can increase the strength and density of the new material. This geometric arrangement of cellular materials is spatially organized and repeated to generate the new “Metallic wood” material. This geometric nano-meter engineering feat produces a very dense material, like that of wood. The inventors have even made the material as dense as water (1,000?kg/m3).

Read more

Apr 21, 2019

Scientists advance Creation of ‘Artificial Lymph node’ to fight Cancer, other diseases

Posted by in categories: biotech/medical, education, engineering, food, genetics

In a proof-of-principle study in mice, scientists at Johns Hopkins Medicine report the creation of a specialized gel that acts like a lymph node to successfully activate and multiply cancer-fighting immune system T-cells. The work puts scientists a step closer, they say, to injecting such artificial lymph nodes into people and sparking T-cells to fight disease.

In the past few years, a wave of discoveries has advanced new techniques to use T-cells – a type of white blood cell – in cancer treatment. To be successful, the cells must be primed, or taught, to spot and react to molecular flags that dot the surfaces of cancer cells. The job of educating T-cells this way typically happens in lymph nodes, small, bean-shaped glands found all over the body that house T-cells. But in patients with cancer and immune system disorders, that learning process is faulty, or doesn’t happen.

To address such defects, current T-cell booster therapy requires physicians to remove T-cells from the blood of a patient with cancer and inject the cells back into the patient after either genetically engineering or activating the cells in a laboratory so they recognize cancer-linked molecular flags.

Continue reading “Scientists advance Creation of ‘Artificial Lymph node’ to fight Cancer, other diseases” »

Apr 19, 2019

Cornell scientists create ‘living’ machines that eat, grow, and evolve

Posted by in categories: engineering, robotics/AI

The field of robotics is going through a renaissance thanks to advances in machine learning and sensor technology. Each generation of robot is engineered with greater mechanical complexity and smarter operating software than the last. But what if, instead of painstakingly designing and engineering a robot, you could just tear open a packet of primordial soup, toss it in the microwave on high for two minutes, and then grow your own ‘lifelike’ robot?

If you’re a Cornell research team, you’d grow a bunch and make them race.


Apr 10, 2019

Surviving Mars: Green Planet expansion allows you to terraform Mars

Posted by in categories: engineering, environmental, space

Terraforming is coming to Surviving Mars in a spectacular way. Not only can you make the atmosphere breathable for humans, but it also allows you to engage in new mechanics previously absent from the experience.

Read more

Apr 10, 2019

Graphene coating could help prevent lithium battery fires

Posted by in categories: energy, engineering, transportation

Lithium batteries are what allow electric vehicles to travel several hundred miles on one charge. Their capacity for energy storage is well known, but so is their tendency to occasionally catch on fire—an occurrence known to battery researchers as “thermal runaway.” These fires occur most frequently when the batteries overheat or cycle rapidly. With more and more electric vehicles on the road each year, battery technology needs to adapt to reduce the likelihood of these dangerous and catastrophic fires.

Researchers from the University of Illinois at Chicago College of Engineering report that graphene—wonder material of the 21st century—may take the oxygen out of lithium battery fires. They report their findings in the journal Advanced Functional Materials.

The reasons catch fire include rapid cycling or charging and discharging, and in the battery. These conditions can cause the cathode inside the battery—which in the case of most lithium batteries is a lithium-containing oxide, usually lithium cobalt oxide—to decompose and release oxygen. If the oxygen combines with other flammable products given off through decomposition of the electrolyte under high enough heat, spontaneous combustion can occur.

Continue reading “Graphene coating could help prevent lithium battery fires” »

Apr 9, 2019

DTI: PH can become artificial intelligence powerhouse

Posted by in categories: business, engineering, government, robotics/AI

Trade Secretary Ramon Lopez said the DTI would soon launch an initiative to train the country’s IT and engineering graduates to create AI solutions for the global marketplace.


Instead of fearing artificial intelligence (AI), a supposed threat to the country’s thriving business process outsourcing (BPO) industry, the Philippines can position itself as a global AI hub, Trade Secretary Ramon Lopez said.

In a recent chance interview, Lopez said the Department of Trade and Industry would soon launch an initiative to train the country’s IT and engineering graduates to create AI solutions for the global marketplace.

Continue reading “DTI: PH can become artificial intelligence powerhouse” »

Apr 9, 2019

Researchers provide new method to boost clean energy research

Posted by in categories: energy, engineering

Electrochemical energy systems—processes by which electrical energy is converted to chemical energy—are at the heart of establishing more efficient generation and storage of intermittent energy from renewable sources in fuel cells and batteries.

The powerhouse substances known as catalysts, which are used to accelerate chemical reactions, are key players in these systems. The size and efficiency of fuel cells, for example, could greatly benefit from using high-performance catalysts.

Producing better catalysts is easier said than done, however. A ’s usefulness is partially based on the amount and quality of its active sites, due to the sites’ specific geometry and electronic properties. Engineering these sites can be an arduous, inefficient process.

Continue reading “Researchers provide new method to boost clean energy research” »

Apr 9, 2019

New ‘acoustic metamaterial’ cancels sound

Posted by in category: engineering

Boston University researchers, Xin Zhang, a professor at the College of Engineering, and Reza Ghaffarivardavagh, a Ph.D. student in the Department of Mechanical Engineering, released a paper in Physical Review B demonstrating it’s possible to silence noise using an open, ringlike structure, created to mathematically perfect specifications, for cutting out sounds while maintaining airflow.

Read more

Apr 3, 2019

U.S. Missile Defense Agency wants a new 1,000 kilowatt-class laser weapons

Posted by in categories: business, engineering, military

The U.S. Missile Defense Agency is looking for information on a 1,000 kW-class electrically-pumped laser for defending the United States, its deployed forces, allies, and friends against all ranges of enemy ballistic missiles in all phases of flight.

The post on the federal business opportunities website is asking industry for information on a capability to demonstrate a 1,000 kW-class electrically-pumped laser in the 2025–26 timeframe.

Missile Defense Agency does not provide a specific platform or strategic mission at this time. The proposed ground demonstrator laser system would be designed to have technology maturation and lightweight engineering paths to potential future platforms.

Continue reading “U.S. Missile Defense Agency wants a new 1,000 kilowatt-class laser weapons” »