Menu

Blog

Archive for the ‘engineering’ category

Sep 11, 2021

Texas researchers develop new bioink specifically for 3D bioprinting blood vessels

Posted by in categories: 3D printing, bioprinting, biotech/medical, engineering

A team of researchers from Texas A&M University’s Department of Biomedical Engineering has designed and 3D bioprinted a highly realistic model of a blood vessel.

The model is made of a newly nanoengineered, purpose-built hydrogel bioink and closely mimics the natural vascular function of a real blood vessel, as well as its disease response. The team hopes its work can pave the way for advanced cardiovascular drug development, expediting treatment approval while eliminating the need for animal and human testing altogether.

“A remarkably unique characteristic of this nanoengineered bioink is that regardless of cell density, it demonstrates a high printability and ability to protect encapsulated cells against high shear forces in the bioprinting process,” said Akhilesh Gaharwar, associate professor at the university and co-author of the study. “Remarkably, 3D bioprinted cells maintain a healthy phenotype and remain viable for nearly one month post-fabrication.”

Continue reading “Texas researchers develop new bioink specifically for 3D bioprinting blood vessels” »

Sep 11, 2021

A spoonful of sugar opens a path to longer lasting lithium sulfur batteries

Posted by in categories: drones, energy, engineering, food, sustainability

Simply by adding sugar, researchers from the Monash Energy Institute have created a longer-lasting, lighter, more sustainable rival to the lithium-ion batteries that are essential for aviation, electric vehicles and submarines.

The Monash team, assisted by CSIRO, report in today’s edition of Nature Communications that using a glucose-based additive on the positive electrode they have managed to stabilize lithium-sulfur battery technology, long touted as the basis for the next generation of batteries.

“In less than a decade, this technology could lead to vehicles including electric busses and trucks that can travel from Melbourne to Sydney without recharging. It could also enable innovation in delivery and agricultural drones where light weight is paramount,” says lead author Professor Mainak Majumder, from the Department of Mechanical and Aerospace Engineering and Associate Director of the Monash Energy Institute.

Sep 10, 2021

Meet D3O: a soft goo that transforms into a substance tough enough to protect you from accidents

Posted by in category: engineering

😮

# engineering.

Sep 10, 2021

Transforming ‘sewer gas’ into clean hydrogen fuel

Posted by in categories: chemistry, energy, engineering, sustainability

Scientists have found a new chemical process to turn a stinky, toxic gas into a clean-burning fuel.

The process, detailed recently in the American Chemical Society journal ACS Sustainable Chemical Engineering, turns —more commonly called “sewer gas”—into . Hydrogen sulfide is emitted from manure piles and sewer pipes and is a key byproduct of industrial activities including refining oil and gas, producing paper and mining.

The process detailed in this study uses relatively little energy and a relatively cheap material—the chemical iron sulfide with a trace amount of molybdenum as an additive.

Sep 7, 2021

New York City Opens A $335 Million Park Island On Hudson River

Posted by in categories: engineering, space travel

The long-awaited $355 million development of Little Island New York has finally been made reality, offering the Big Apple a unique new space.


Although it’s unlikely travel to the US will be on the cards for Aussies anytime soon, it’s good to keep track of the developments that await us when we eventually graduate from tiny travel bubbles to full-scale international adventure once again. The latest development: the ambitious new US$260 million (AU$335 million) Little Island New York, an offshore public park in the Hudson River that has been one of the city’s most anticipated openings for a couple of years now.

Located at Pier 55 the fascinating public park has been designed to resemble a supersized leaf drifting on the Hudson, buoyed by a base of 280 concrete piles and precast columns driven down as far as 60 metres below water, as well as 132 tulip-shaped concrete pots positioned at various elevations from 4 metres to 18 metres above water, designed specifically by Heatherwick Studio, and developed by engineering firm Arup, to hold the soil, overlooks, and trees. This support base allows for the two-acre park to stay securely afloat so its 687-seat amphitheatre, smaller stage, and plaza don’t suddenly drop to the depths of the Hudson.

Continue reading “New York City Opens A $335 Million Park Island On Hudson River” »

Sep 5, 2021

Chinese Scientists Say Quantum Radar Could End Stealth Advantage

Posted by in categories: climatology, education, engineering, quantum physics

A new quantum radar technology developed by a team of Chinese researchers would be able to detect stealth planes, the South China Morning Post is reporting.

The news service reports that the radar technology generates a mini electromagnetic storm to detect objects. Professor Zhang Chao and his team at Tsinghua University’s aerospace engineering school, reported their findings in a paper in Journal of Radars.

A quantum radar is different from traditional radars in several ways, according to the paper. While traditional radars have on a fixed or rotating dish, the quantum design features a gun-shaped instrument that accelerates electrons. The electrons pass through a winding tube of a strong magnetic fields, producing what is described as a tornado-shaped microwave vortex.

Continue reading “Chinese Scientists Say Quantum Radar Could End Stealth Advantage” »

Sep 4, 2021

A high-pressure jet of water can cut through anything

Posted by in category: engineering

🌊

# engineering.

Sep 3, 2021

Researchers use gold film to enhance quantum sensing with qubits in a 2D material

Posted by in categories: biological, engineering, quantum physics

Quantum sensing is being used to outpace modern sensing processes by applying quantum mechanics to design and engineering. These optimized processes will help beat the current limits in processes like studying magnetic materials or studying biological samples. In short, quantum is the next frontier in sensing technology.

As recently as 2,019 spin defects known as qubits were discovered in 2D materials (hexagonal boron nitride) which could amplify the field of ultrathin . These scientists hit a snag in their discovery which has unleashed a scientific race to resolve the issues. Their sensitivity was limited by their low brightness and the low contrast of their magnetic resonance signal. As recently as two weeks ago on August 9 2021, Nature Physics published an article titled “quantum sensors go flat,” where they highlighted the benefits and also outlined current shortfalls of this new and exciting means of sensing via qubits in 2D materials.

A team of researchers at Purdue took on this challenge of overcoming qubit signal shortcomings in their work to develop ultrathin quantum sensors with 2D materials. Their publication in Nano Letters was published today, September 2 2021, and they have solved some of the critical issues and yielded much better results through experimentation.

Sep 1, 2021

Researchers discover way to switch on and speed up tendon healing

Posted by in categories: biotech/medical, engineering, health

The study investigated whether electrical therapy, coupled with exercise, would show promise in treating tendon disease or ruptures. It showed that tendon cell function and repair can be controlled through electrical stimulation from an implantable device which is powered by body movement.


Researchers at CÚRAM, the SFI Research Centre for Medical Devices based at NUI Galway, have shown how the simple act of walking can power an implantable stimulator device to speed up treatment of musculoskeletal diseases.

The results of have been published in the prestigious journal Advanced Materials.

Continue reading “Researchers discover way to switch on and speed up tendon healing” »

Sep 1, 2021

Using liquid metal to turn motion into electricity, even underwater

Posted by in categories: chemistry, energy, engineering

Researchers at North Carolina State University have created a soft and stretchable device that converts movement into electricity and can work in wet environments.

“Mechanical energy—such as the kinetic energy of wind, waves, and vibrations from motors—is abundant,” says Michael Dickey, corresponding author of a paper on the work and Camille & Henry Dreyfus Professor of Chemical and Biomolecular Engineering at NC State. “We have created a that can turn this type of mechanical motion into . And one of its remarkable attributes is that it works perfectly well underwater.”

Continue reading “Using liquid metal to turn motion into electricity, even underwater” »

Page 1 of 14912345678Last