Menu

Blog

Archive for the ‘encryption’ category: Page 40

Oct 31, 2016

Researchers nearly reach quantum limit with nanodrums

Posted by in categories: encryption, quantum physics

Extremely accurate measurements of microwave signals can potentially be used for data encryption based on quantum cryptography and other purposes.

Researchers at Aalto University and the University of Jyväskylä have developed a new method of measuring extremely accurately. This method can be used for processing quantum information, for example, by efficiently transforming signals from microwave circuits to the optical regime.

Read more

Oct 30, 2016

Google’s neural networks created their own encryption method

Posted by in categories: cybercrime/malcode, encryption, information science, robotics/AI

Fortifying cybersecurity is on everyone’s mind after the massive DDoS attack from last week. However, it’s not an easy task as the number of hackers evolves the same as security. What if your machine can learn how to protect itself from prying eyes? Researchers from Google Brain, Google’s deep Learning project, has shown that neural networks can learn to create their own form of encryption.

According to a research paper, Martín Abadi and David Andersen assigned Google’s AI to work out how to use a simple encryption technique. Using machine learning, those machines could easily create their own form of encrypted message, though they didn’t learn specific cryptographic algorithms. Albeit, compared to the current human-designed system, that was pretty basic, but an interesting step for neural networks.

To find out whether artificial intelligence could learn to encrypt on its own or not, the Google Brain team built an encryption game with its three different entities: Alice, Bob and Eve, powered by deep learning neural networks. Alice’s task was to send an encrypted message to Bob, Bob’s task was to decode that message, and Eve’s job was to figure out how to eavesdrop and decode the message Alice sent herself.

Continue reading “Google’s neural networks created their own encryption method” »

Oct 30, 2016

Quantum Teleportation Across The Dark Web

Posted by in categories: encryption, internet, quantum physics

Get Ready Folks! Imagine a QC DarkNet as it will too come.


Quantum teleportation brings to mind Star Trek’s transporter, where crew members are disassembled in one location to be reassembled in another. Real quantum teleportation is a much more subtle effect where information is transferred between entangled quantum states. It’s a quantum trick that could give us the ultimate in secure communication. While quantum teleportation experiments have been performed countless times in the lab, doing it in the real world has proved a bit more challenging. But a recent experiment using a dark fibre portion of the internet has brought quantum teleportation one step closer to real world applications.

The backbone of the internet is a network of optical fibre. Everything from your bank transactions to pictures of your cat travel as beams of light through this fibre network. However there is much more fibre that has been laid than is currently used. This unused portion of the network is known as dark fibre. Other than not being currently used, the dark fiber network has the same properties as the web we currently use. This new experiment used a bit of this dark web in Calgary to teleport a photon state under real world conditions.

Continue reading “Quantum Teleportation Across The Dark Web” »

Oct 29, 2016

Google’s AI created its own form of encryption

Posted by in categories: encryption, robotics/AI

Just two neural networks passing secret notes without you.

Read more

Oct 28, 2016

Google’s Alice AI Is Sending Secret Messages To Another AI

Posted by in categories: education, encryption, robotics/AI

Encryption is something we all rely on regularly to keep our information safe online, but many of us have experienced it since childhood, and in fact probably used it in school. If you ever wrote out a message in code that nobody could read without they knew the decipher rules, you messed around with encryption!

That same secret message technique has now been put to a much more worrying use. Google has created multiple AI and they’ve learned how to not only create their own encryption, but are now communicating using messages nobody else can read.

This Google Brain project is an experiment in deep learning techniques and involved the use of three neural networks (Alice, Bob, and Eve) created using artificial neurons. These neural nets work like a much simplified version of our brains, and they are slowly and steadily becoming more intelligent.

Continue reading “Google’s Alice AI Is Sending Secret Messages To Another AI” »

Oct 26, 2016

Precise quantum cloning: Possible pathway to secure communication

Posted by in categories: encryption, quantum physics

Physicists at The Australian National University (ANU) and University of Queensland (UQ) have produced near-perfect clones of quantum information using a new method to surpass previous cloning limits.

A global race is on to use quantum physics for ultra-secure encryption over long distances according to Prof Ping Koy Lam, node director of the ARC Centre of Excellence for Quantum Computation and Communication Technology (CQC2T) at ANU.

Continue reading “Precise quantum cloning: Possible pathway to secure communication” »

Oct 26, 2016

Google’s neural networks invent their own encryption

Posted by in categories: computing, encryption, robotics/AI

Using machine learning, computers have come up with codes that let them send secret messages to each other – but they’re still a long way off humans.

Read more

Oct 25, 2016

The exciting new age of quantum computing

Posted by in categories: biotech/medical, computing, encryption, military, quantum physics, security, space travel

What does the future hold for computing? Experts at the Networked Quantum Information Technologies Hub (NQIT), based at Oxford University, believe our next great technological leap lies in the development of quantum computing.

Quantum computers could solve problems it takes a conventional computer longer than the lifetime of the universe to solve. This could bring new possibilities, such as advanced drug development, superior military intelligence, greater opportunities for and enhanced encryption security.

Continue reading “The exciting new age of quantum computing” »

Oct 18, 2016

Quantum Teleportation Could Revolutionize Modern Phone And Internet Communication

Posted by in categories: encryption, finance, internet, mobile phones, quantum physics, space, transportation

I never get tired of articles highlighting the potential around leveraging Quantum teleporting as a method to replace networks and communications. Now the real question is how soon and how much of the existing infrastructure will need to be replaced to begin taking advantage of this technology earlier than others? As with most things, governments are often early adopters as well as Financial Services and ISPs are a close 2nd in the adoption of such technologies.


An experiment conducted about quantum teleportation could improve and transform the modern phone and Internet communication by having highly secure and encrypted messaging.

A recent study has suggested that comet outbursts are caused by avalanches and not geysers.

Continue reading “Quantum Teleportation Could Revolutionize Modern Phone And Internet Communication” »

Oct 17, 2016

How quantum effects could improve artificial intelligence

Posted by in categories: computing, encryption, quantum physics, robotics/AI, sustainability

(Phys.org)—Over the past few decades, quantum effects have greatly improved many areas of information science, including computing, cryptography, and secure communication. More recently, research has suggested that quantum effects could offer similar advantages for the emerging field of quantum machine learning (a subfield of artificial intelligence), leading to more intelligent machines that learn quickly and efficiently by interacting with their environments.

In a new study published in Physical Review Letters, Vedran Dunjko and coauthors have added to this research, showing that quantum effects can likely offer significant benefits to .

“The progress in machine learning critically relies on processing power,” Dunjko, a physicist at the University of Innsbruck in Austria, told Phys.org. “Moreover, the type of underlying information processing that many aspects of machine learning rely upon is particularly amenable to quantum enhancements. As quantum technologies emerge, quantum machine learning will play an instrumental role in our society—including deepening our understanding of climate change, assisting in the development of new medicine and therapies, and also in settings relying on learning through interaction, which is vital in automated cars and smart factories.”

Continue reading “How quantum effects could improve artificial intelligence” »

Page 40 of 53First3738394041424344Last