Toggle light / dark theme

“Recall uses Copilot+ PC advanced processing capabilities to take images of your active screen every few seconds,” Microsoft says on its website. “The snapshots are encrypted and saved on your PC’s hard drive. You can use Recall to locate the content you have viewed on your PC using search or on a timeline bar that allows you to scroll through your snapshots.”

By performing a Recall action, users can access a snapshot from a specific time period, providing context for the event or moment they are searching for. It also allows users to search through teleconference meetings they’ve participated in and videos watched using an AI-powered feature that transcribes and translates speech.

At first glance, the Recall feature seems like it may set the stage for potential gross violations of user privacy. Despite reassurances from Microsoft, that impression persists for second and third glances as well. For example, someone with access to your Windows account could potentially use Recall to see everything you’ve been doing recently on your PC, which might extend beyond the embarrassing implications of pornography viewing and actually threaten the lives of journalists or perceived enemies of the state.

Micius is considered quantum’s “Sputnik” moment, prompting American policymakers to funnel hundreds of millions of dollars into quantum information science via the National Quantum Initiative. Bills such as the Innovation and Competition Act of 2021 have provided $1.5 billion for communications research, including quantum technology. The Biden Administration’s proposed 2024 budget includes $25 billion for “emerging technologies” including AI and quantum. Ultimately, quantum’s awesome computing power will soon render all existing cryptography obsolete, presenting a security migraine for governments and corporations everywhere.

Quantum’s potential to turbocharge AI also applies to the simmering technology competition between the world’s superpowers. In 2021, the U.S. Commerce Department added eight Chinese quantum computing organizations to its Entity List, claiming they “support the military modernization of the People’s Liberation Army” and adopt American technologies to develop “counter-stealth and counter-submarine applications, and the ability to break encryption.”

These restrictions dovetail with a raft of measures targeting China’s AI ambitions, including last year blocking Nvida from selling AI chips to Chinese firms. The question is whether competition between the world’s top two economies stymies overall progress on AI and quantum—or pushes each nation to accelerate these technologies. The answer could have far-reaching consequences.

Here’s my new Opinion article for Newsweek on brainwave technology and AI. Check it out!


Historically, our greatest strength is our biological form, tested and evolved over millions of years. Instead of spending resources searching for ways to connect technology directly to our minds, we could find ways to use technology to protect our biological thoughts and proclivity. That might mean faraday cages around our brains that no super intelligent AIs signals could crack—as well as encryption where our code perpetually changes randomly.

Another way to protect against AI is for humans to become like bugs—a concept recently explored in the Netflix series 3 Body Problem. Companies are already working on trying to scan the brain—down to its atoms—in real time. Eventually, the hope is we’ll be able to upload our consciousnesses into computers. There’s open debate whether an upload is the real you. But for purposes of protecting ourselves against AI, another important question is how many uploads of you would there be? If AI was inundated with trillions upon trillions of uploaded human minds, it’s possible, like bugs, AI would never win a battle to get rid all of us, even if it wanted to. There would simply be too many of us in the cloud, even if there was just one of us in the flesh.

Another way to outsmart AI might be to utilize brainwave technology so that human minds are interconnected. Some scientists call this the hive mind, and it could be possible in the future to obtain millions of minds in sync without the use of AI. AI might be able to corrupt the method of human hive mind communication, but it’s still another way we could attempt to remain as intelligent as AI. After all, if you could harness a billion minds together, who knows how smart we could be?

It is unclear if any of these options are going to outsmart AI in the 100-year-future. But a mindset change in the age of AI is needed for brainwave tech. And that is not one of rushing to develop the latest tech out there, but rushing to innovate ways that brainwave tech can protect ourselves from AI.

Some Google Chrome users report having issues connecting to websites, servers, and firewalls after Chrome 124 was released last week with the new quantum-resistant X25519Kyber768 encapsulation mechanism enabled by default.

Google started testing the post-quantum secure TLS key encapsulation mechanism in August and has now enabled it in the latest Chrome version for all users.

The new version utilizes the Kyber768 quantum-resistant key agreement algorithm for TLS 1.3 and QUIC connections to protect Chrome TLS traffic against quantum cryptanalysis.

How can we guarantee that data sent over the internet is only accessible to its intended recipient? Currently, our data is secured using encryption methods based on the premise that factoring large numbers is a complex task. However, as quantum computing advances, these encryption techniques may become vulnerable and potentially ineffective in the future.

Encryption by means of physical laws

Tobias Vogl, a professor of Quantum Communication Systems Engineering, is working on an encryption process that relies on principles of physics. “Security will be based on the information being encoded into individual light particles and then transmitted. The laws of physics do not permit this information to be extracted or copied. When the information is intercepted, the light particles change their characteristics. Because we can measure these state changes, any attempt to intercept the transmitted data will be recognized immediately, regardless of future advances in technology,” says Tobias Vogl.

PRESS RELEASE — The full power of next-generation quantum computing could soon be harnessed by millions of individuals and companies, thanks to a breakthrough by scientists at Oxford University Physics guaranteeing security and privacy. This advance promises to unlock the transformative potential of cloud-based quantum computing and is detailed in a new study published in the influential U.S. scientific journal Physical Review Letters.

Quantum computing is developing rapidly, paving the way for new applications which could transform services in many areas like healthcare and financial services. It works in a fundamentally different way to conventional computing and is potentially far more powerful. However, it currently requires controlled conditions to remain stable and there are concerns around data authenticity and the effectiveness of current security and encryption systems.

Several leading providers of cloud-based services, like Google, Amazon, and IBM, already separately offer some elements of quantum computing. Safeguarding the privacy and security of customer data is a vital precursor to scaling up and expending its use, and for the development of new applications as the technology advances. The new study by researchers at Oxford University Physics addresses these challenges.

A new device consisting of a semiconductor ring produces pairs of entangled photons that could be used in a photonic quantum processor.

Quantum light sources produce entangled pairs of photons that can be used in quantum computing and cryptography. A new experiment has demonstrated a quantum light source made from the semiconductor gallium nitride. This material provides a versatile platform for device fabrication, having previously been used for on-chip lasers, detectors, and waveguides. Combined with these other optical components, the new quantum light source opens up the potential to construct a complex quantum circuit, such as a photonic quantum processor, on a single chip.

Quantum optics is a rapidly advancing field, with many experiments using photons to carry quantum information and perform quantum computations. However, for optical systems to compete with other quantum information technologies, quantum-optics devices will need to be shrunk from tabletop size to microchip size. An important step in this transformation is the development of quantum light generation on a semiconductor chip. Several research teams have managed this feat using materials such as gallium aluminum arsenide, indium phosphide, and silicon carbide. And yet a fully integrated photonic circuit will require a range of components in addition to quantum light sources.

A new study by Hebrew University has made a significant breakthrough by successfully incorporating single-photon sources into small chips that operate at room temperature. This development marks a crucial progress in the field of quantum photonics, opening up possibilities for its use in quantum computing and cryptography. It represents a key achievement in creating usable quantum photonic devices, signaling an optimistic outlook for the complete realization of quantum technologies, including computing, communication, and sensing.

A recent study, spearheaded by Boaz Lubotzky during his Ph.D. research, along with Prof. Ronen Rapaport from the Racah Institute of Physics at The Hebrew University of Jerusalem, in collaboration with teams from Los Alamos National Laboratory (LANL) in the USA and from Ulm University in Germany, unveiled a significant advancement toward the on-chip integration of single-photon sources at room temperature. This achievement represents a significant step forward in the field of quantum photonics and holds promise for various applications including quantum computing, cryptography, and sensing.