Toggle light / dark theme

Two companies to help Navy safeguard high-altitude sensitive electronics from electromagnetic pulse (EMP)

SAN DIEGO – U.S. Navy electronics experts are hiring two companies to develop enabling technologies to safeguard naval systems from the effects of high-altitude electromagnetic pulse (EMP).

Officials of the Naval Information Warfare Center Pacific in San Diego, announced estimated $12.5 million separate contracts Wednesday to Long Wave Inc. in Oklahoma City, Okla., and to Reliance Construction Co. in Cary, N.C., for high-altitude EMP hardening processes.

Liquid metal polymers show potential for enhanced electronics performance

Effective thermal management is essential to ensuring the performance and lifespan of modern electronics. While polymers are widely used in electronic components, they inherently exhibit poor thermal conductivity, limiting their effectiveness in dissipating heat. To overcome this, researchers have been investigating the potential of integrating highly conductive fillers, such as liquid metals (LM), into polymers.

New camera lets us see the colors of the world through the eyes of animals

A new camera system is making it possible for humans to see colors in the way animals do, opening up a vivid new perspective on the natural world.

Led by researcher Vera Vasas, who has spent years studying animal vision, this innovative project is changing how we understand what animals actually see.

In collaboration with colleagues from the Hanley Color Lab at George Mason University, Vasas has developed a tool that lets us experience the world through the eyes of different species.

Gold structures improve spin wave transfer to address electronics overheating problem

A research team has made a breakthrough in significantly enhancing the commercial viability of spin wave harnessing technology. This innovation is being heralded as a next-generation technological solution to the persistent issue of heat generation in electronic devices. The research findings were published on September 26 in the online edition of Matter.

Watch: Jetson founder pushes the limits of ‘Freestyle’ eVTOL agility

Jetson Founder Tomasz Patan is clearly getting very comfortable with the Jetson One eVTOL’s flight control system … Watch him wrench the controls around to show off how sharply – and safely – this thing can handle tight turns in flight.

Multicopter drones were revolutionary little gadgets when they started to appear on the scene for a number of reasons, but one was their highly automated fly-by-wire control systems. No human could manually control motor speeds on upwards of four rotors simultaneously, but a sensor-equipped flight control system certainly could – hence, drones like the DJI Phantom were able to automatically lift off and land, maintain altitude if required, and self-balance against wind gusts to hover in place, while also responding quickly to a pilot’s commands.

This is part of the promise with eVTOL aircraft – some of which, like the Jetson One, are really best described as great big multicopter drones a person can sit in.

Loss Analysis Boosts OLED Performance

OLED performance depends on the behavior of electron–hole pairs, or excitons, that form within the emissive layer of the device. High efficiencies can be obtained when most of the excitons produce light as they decay, but some excitons can be lost without emitting light through a process known as exciton–polaron quenching (EPQ).

EPQ was believed to occur mainly within the bulk of the emissive layer, but recent studies have suggested that significant quenching can take place at the interface with the adjacent device layers. To isolate this energy-loss channel, the researchers designed a series of bilayer devices that allowed them to identify three physical factors that govern interfacial EPQ in any OLED device. They found that the dominant factor is the effect of the energy barriers experienced by electrons and holes at the interfaces: A barrier higher than about 0.2 eV leads to greater interfacial EPQ, which causes a significant drop in emission efficiency.

Armed with this knowledge the researchers engineered OLED devices to minimize losses from interfacial EPQ, which resulted in efficiency enhancements for red, green, and blue devices of 70%, 47%, and 66%, respectively. The loss mitigation also increased the lifetime of blue OLEDs by as much as 67%, an important result for creating long-lived full-color displays.

/* */