Menu

Blog

Archive for the ‘cyborgs’ category: Page 5

Mar 21, 2024

Researchers design a spring-assisted actuator that could enhance next-gen robots

Posted by in categories: cyborgs, robotics/AI

Whether it’s a powered prosthesis to assist a person who has lost a limb or an independent robot navigating the outside world, we are asking machines to perform increasingly complex, dynamic tasks. But the standard electric motor was designed for steady, ongoing activities like running a compressor or spinning a conveyor belt—even updated designs waste a lot of energy when making more complicated movements.

Researchers at Stanford University have invented a way to augment to make them much more efficient at performing dynamic movements through a new type of actuator, a device that uses energy to make things move. Their actuator, published in Science Robotics, uses springs and clutches to accomplish a variety of tasks with a fraction of the energy usage of a typical electric motor.

Continue reading “Researchers design a spring-assisted actuator that could enhance next-gen robots” »

Mar 21, 2024

Universal controller could push robotic prostheses, exoskeletons into real-world use

Posted by in categories: alien life, cyborgs, robotics/AI

Robotic exoskeletons designed to help humans with walking or physically demanding work have been the stuff of sci-fi lore for decades. Remember Ellen Ripley in that Power Loader in “Alien”? Or the crazy mobile platform George McFly wore in 2015 in “Back to the Future, Part II” because he threw his back out?

Mar 14, 2024

So You Want to Rewire Brains

Posted by in categories: biotech/medical, computing, cyborgs, internet, neuroscience

There’s a lot to like about brain-computer interfaces, those sci-fi-sounding devices that jack into your skull and turn neural signals into software commands. Experimental BCIs help paralyzed people communicate, use the internet, and move prosthetic limbs. In recent years, the devices have even gone wireless. If mind-reading computers become part of everyday life, we’ll need doctors to install the tiny electrodes and transmitters that make them work. So if you have steady hands and don’t mind a little blood, being a BCI surgeon might be a job for you.

Shahram Majidi, a neurosurgeon at Mount Sinai Hospital in New York, began operating in clinical trials for a BCI called the Stentrode in 2022. (That’s “stent” as in a tube that often sits inside a vein or artery.) Here he talks about a not-too-distant future where he’s performing hundreds of similar procedures a year.

Brain-computer interfaces have been around for a few decades, and there are different kinds of implants now. Some have electrodes attached to your brain with wires sticking out of your head and connecting to a computer. I think that’s great as a proof of concept, but it requires an engineer sitting there and a big computer next to you all the time. You can’t just use it in your bedroom. The beauty of a BCI like the Stentrode, which is what I’ve worked with, is that nothing is sticking out of your brain. The electrodes are in blood vessels next to the brain, and you get there by going through the patient’s jugular. The receiver is underneath the skin in their chest and connected to a device that decodes the brain signals via Bluetooth. I think that’s the future.

Mar 5, 2024

AGI in 3 to 8 years

Posted by in categories: cyborgs, economics, employment, internet, robotics/AI, singularity

When will AI match and surpass human capability? In short, when will we have AGI, or artificial general intelligence… the kind of intelligence that should teach itself and grow itself to vastly larger intellect than an individual human?

According to Ben Goertzel, CEO of SingularityNet, that time is very close: only 3 to 8 years away. In this TechFirst, I chat with Ben as we approach the Beneficial AGI conference in Panama City, Panama.

Continue reading “AGI in 3 to 8 years” »

Mar 1, 2024

A vision of chipped humanity: Brain chip implants like Neuralink raise questions about the future of humanity

Posted by in categories: biotech/medical, cybercrime/malcode, cyborgs, Elon Musk, finance, health, law, robotics/AI, transhumanism

Interestingly enough, although Elon Musk’s Neuralink received a great deal of media attention, early in 2023, Synchron published results from its first-in-human study of four patients with severe paralysis who received its first-generation Stentrode neuroprosthesis implant. The implant allowed participants to create digital switches that controlled daily tasks like sending texts and emails, partaking in online banking, and communicating care needs. The study’s findings were published in a paper in JAMA Neurology in January 2023. Then, before September, the first six US patients had the Synchron BCI implanted. The study’s findings are expected by late 2024.

Let’s return to Upgrade. “One part The Six Million Dollar Man, one part Death Wish revenge fantasy” was how critics described the movie. While Death Wish is a 1974 American vigilante action-thriller movie that is partially based on Brian Garfield’s 1972 novel of the same name, the American sci-fi television series The Six Million Dollar Man from the 1970s, based on Martin Caidin’s 1972 novel Cyborg, could be considered a landmark in the context of human-AI symbiosis, although in fantasy’s domain. Oscar Goldman’s opening line in The Six Million Dollar Man was, “Gentlemen, we can rebuild him. We have the technology. We have the capability to make the world’s first bionic man… Better than he was before. Better—stronger—faster.” The term “cyborg” is a portmanteau of the words “cybernetic” and “organism,” which was coined in 1960 by two scientists, Manfred Clynes and Nathan S Kline.

At the moment, “cyborg” doesn’t seem to be a narrative of a distant future, though. Rather, it’s very much a story of today. We are just inches away from becoming cyborgs, perhaps, thanks to the brain chip implants, although Elon Musk perceives that “we are already a cyborg to some degree,” and he may be right. Cyborgs, however, pose a threat, while the dystopian idea of being ruled by Big Brother also haunts. Around the world, chip implants have already sparked heated discussions on a variety of topics, including privacy, the law, technology, medicine, security, politics, and religion. USA Today published a piece headlined “You will get chipped—eventually” as early as August 2017. And an article published in The Atlantic in September 2018 discussed how (not only brain chips but) microchip implants, in general, are evolving from a tech-geek curiosity to a legitimate health utility and that there may not be as many reasons to say “no.” But numerous concerns about privacy and cybersecurity would keep us haunted. It would be extremely difficult for policymakers to formulate laws pertaining to such sensitive yet quickly developing technology.

Feb 27, 2024

Super-realistic prosthetic eyes made in record time with 3D printing

Posted by in categories: 3D printing, biotech/medical, cyborgs

Scientists can now 3D print more-realistic prosthetic eyes in a fraction of the time and effort required by traditional approaches.

Feb 26, 2024

A Prelude to Speech: How the Brain Forms Words

Posted by in categories: biotech/medical, cyborgs, neuroscience

Summary: Researchers made a groundbreaking discovery on how the human brain forms words before speaking. By utilizing Neuropixels probes, they’ve mapped out how neurons represent speech sounds and assemble them into language.

This study not only sheds light on the complex cognitive steps involved in speech production but also opens up possibilities for treating speech and language disorders. The technology could lead to artificial prosthetics for synthetic speech, benefiting those with neurological disorders.

Feb 23, 2024

Long-Term Outcomes of Transcatheter vs. Surgical Aortic Valve Replacement

Posted by in categories: biotech/medical, cyborgs, evolution

Dr. David Cohen comments on 10-year results from a trial of transcatheter vs. surgical aortic valve replacement:


Over the past decade, transcatheter aortic valve replacement (TAVR) has evolved from a niche procedure to treat severe aortic stenosis in high-risk patients to a mainstream procedure that is also performed in intermediate-and low-risk patients. With this evolution in practice, the large number of younger patients with life expectancies 10 years now receiving TAVR has raised concerns about its durability and patients’ long-term outcomes. Now, 10-year results are available from the NOTION trial of TAVR versus surgical aortic valve replacement (SAVR) that was conducted between 2009 and 2013 (NEJM JW Cardiol May 29 2015 and J Am Coll Cardiol 2015; 65:2184).

Two hundred eighty patients aged 70 years (mean age, 79 years; mean predicted risk of surgical mortality, 3%) were randomized to SAVR using any commercially available bioprosthesis or TAVR using the first-generation self-expanding CoreValve device. At 10-year follow-up, there was no significant between-group difference in the composite of death, stroke, or myocardial infarction (66% for both groups) or any of the individual components. Rates of bioprosthetic valve failure and repeat valve intervention were also similar. However, the rate of bioprosthetic valve dysfunction was lower with TAVR, largely reflecting lower rates of patient–prosthesis mismatch. The rate of structural valve deterioration was lower with TAVR as well, driven mainly by lower transvalvular gradients with TAVR that emerged early and persisted throughout follow-up.

Continue reading “Long-Term Outcomes of Transcatheter vs. Surgical Aortic Valve Replacement” »

Feb 22, 2024

Man feels hot and cold again with prosthetic hand breakthrough

Posted by in categories: biotech/medical, cyborgs

Researchers have built a device that helps users feel temperature through a prosthetic arm. A new study shows it works with high accuracy.

Feb 21, 2024

Bio-inspired neuroprosthetics: Sending signals the brain can understand

Posted by in categories: biotech/medical, cyborgs, engineering

A few years ago, a team of researchers working under Professor Stanisa Raspopovic at the ETH Zurich Neuroengineering Lab gained worldwide attention when they announced that their prosthetic legs had enabled amputees to feel sensations from this artificial body part for the first time.

Unlike commercial leg prostheses, which simply provide amputees with stability and support, the ETH researchers’ prosthetic device was connected to the sciatic nerve in the test subjects’ thigh via implanted electrodes.

This electrical connection enabled the neuroprosthesis to communicate with the patient’s brain, for example relaying information on the constant changes in pressure detected on the sole of the prosthetic foot when walking. This gave the test subjects greater confidence in their prosthesis—and it enabled them to walk considerably faster on challenging terrains.

Page 5 of 129First23456789Last