Menu

Blog

Archive for the ‘cosmology’ category: Page 89

Oct 25, 2023

Largest-ever computer simulation uncovers universe’s matter mystery

Posted by in categories: computing, cosmology

The FLAMINGO project reveals the distribution of dark and ordinary matter in the universe and its impact on the S8 tension in cosmology.

We gaze up at the night sky, captivated by the glittering stars and galaxies that decorate the cosmos. Yet, beneath this mesmerizing spectacle lies a perplexing cosmic conundrum: How is matter truly distributed throughout the universe?

Despite its apparent simplicity, the answer to this question has become a baffling puzzle for scientists. However, a glimmer of hope has emerged in the form of a groundbreaking computer simulation conducted by an international team of astronomers known as the FLAMINGO project, the Royal Astronomical Society announced in a release.

Oct 24, 2023

LIGO surpasses the quantum limit

Posted by in categories: cosmology, quantum physics

In 2015, the Laser Interferometer Gravitational-Wave Observatory (LIGO), made history when it made the first direct detection of gravitational waves—ripples in space and time—produced by a pair of colliding black holes.

Since then, LIGO and its sister detector in Europe, Virgo, have detected gravitational waves from dozens of mergers between black holes as well as from collisions between a related class of stellar remnants called neutron stars. At the heart of LIGO’s success is its ability to measure the stretching and squeezing of the fabric of space-time on scales 10 thousand trillion times smaller than a human hair.

As incomprehensibly small as these measurements are, LIGO’s precision has continued to be limited by the laws of quantum physics. At very tiny, subatomic scales, empty space is filled with a faint crackling of quantum noise, which interferes with LIGO’s measurements and restricts how sensitive the observatory can be.

Oct 24, 2023

Testing A Time-Jumping, Multiverse-Killing, Consciousness-Spawning Theory Of Reality

Posted by in categories: cosmology, neuroscience, particle physics, quantum physics

When scientists measure a particle, it seems to collapse to one fixed state. Yet no one can be sure what’s causing collapse, also called reduction of the state. Some scientists and philosophers even think that wave function collapse is an elaborate illusion. This debate is called the measurement problem in quantum mechanics.

The measurement problem has led many physicists and philosophers to believe that a conscious observer is somehow acting on quantum particles. One proposal is that a conscious observer causes collapse. Another theory is that a conscious observer causes the universe to split apart, spiralling out alternate realities. These worlds would be parallel yet inaccessible to us so that we only ever see things in one single state in whatever possible world we’re stuck in. This is the Multiverse or Many Worlds theory. “The point of view that it is consciousness that reduces the state is really an absurdity,” says Penrose, adding that a belief in Many Worlds is a phase that every physicist, including himself, eventually outgrows. “I shouldn’t be so blunt because very distinguished people seem to have taken that view.” Penrose demurs. He politely but unequivocally waves off the idea that a conscious observer collapses wave functions by looking at them. Likewise, he dismisses the view that a conscious observer spins off near infinite universes with a glance. “That’s making consciousness do the job of collapsing the wave function without having a theory of consciousness,” says Penrose. “I’m turning it around and I’m saying whatever consciousness is, for quite different reasons, I think it does depend on the collapse of the wave function. On that physical process.”

What’s causing collapse? “It’s an objective phenomenon,” insists Penrose. He’s convinced this objective phenomenon has to be the fundamental force: gravity. Gravity is a central player in all of classical physics conspicuously missing from quantum mechanics.

Oct 24, 2023

Black Holes in “Perfect Pairs” Balance Gravity and Cosmic Expansion

Posted by in category: cosmology

Scientists theorize balanced black hole.

A black hole is a place in space where the gravitational field is so strong that not even light can escape it. Astronomers classify black holes into three categories by size: miniature, stellar, and supermassive black holes. Miniature black holes could have a mass smaller than our Sun and supermassive black holes could have a mass equivalent to billions of our Sun.

Oct 23, 2023

Astronomers capture first direct evidence of black hole spinning

Posted by in category: cosmology

In a first, astronomers have discovered the first direct evidence which proves the spinning of a black hole.

The observations gave astronomers new insights regarding enigmatic celestial objects, as the scientists focussed on the supermassive black hole which is present at the centre of the neighbouring Messier 87 (M87) galaxy. The Event Horizon Telescope had imaged the shadow of Messier 87 (M87) galaxy.

Just like other supermassive black holes, M87 also features powerful jets which were launched from the poles almost at the speed of light into intergalactic space.

Oct 23, 2023

Ultra-powerful plasma ‘blades’ could slice entire stars in half, new paper suggests

Posted by in categories: cosmology, particle physics

Stars could be sliced in half by “relativistic blades,” or ultra-powerful outflows of plasma shaped by extremely strong magnetic fields, a wild new study suggests. And these star-splitting blades could explain some of the brightest explosions in the universe.

The study authors, based at the Center for Cosmology and Particle Physics at New York University, outlined their results in a paper published in September to the preprint database arXiv. The study has not yet been peer-reviewed.

Oct 22, 2023

Black holes could come in ‘perfect pairs’ in an ever expanding universe

Posted by in categories: cosmology, physics

Researchers from the University of Southampton, together with colleagues from the universities of Cambridge and Barcelona, have shown it’s theoretically possible for black holes to exist in perfectly balanced pairs—held in equilibrium by a cosmological force—mimicking a single black hole.

Black holes are massive astronomical objects that have such a strong gravitational pull that nothing, not even light, can escape. They are incredibly dense. A black hole could pack the mass of the Earth into a space the size of a pea.

Conventional theories about , based on Einstein’s theory of General Relativity, typically explain how static or spinning black holes can exist on their own, isolated in space. Black holes in pairs would eventually be thwarted by gravity attracting and colliding them together.

Oct 20, 2023

“Pseudogravity” in crystals can bend light like black holes

Posted by in categories: cosmology, physics

Scientists in Japan have managed to manipulate light as though it was being influenced by gravity. By carefully distorting a photonic crystal, the team was able to invoke “pseudogravity” to bend a beam of light, which could have useful applications in optics systems.

One of the quirks of Einstein’s theory of general relativity is that light is affected by the fabric of spacetime, which itself is distorted by gravity. That’s why objects with extremely high masses, like black holes or entire galaxies, wreak such havoc on light, bending its path and magnifying distant objects.

In recent studies, it was predicted that it should be possible to replicate this effect in photonic crystals. These structures are used to control light in optics devices and experiments, and they’re generally made by arranging multiple materials into periodic patterns. Distortions in these crystals, it was theorized, could deflect light waves in a way very similar to cosmic-scale gravitational lenses. The phenomenon was dubbed pseudogravity.

Oct 19, 2023

Scientists Can Now Make Tiny Black Holes With Pseudogravity

Posted by in categories: cosmology, physics

Published 8 seconds ago.

Physicists at the Kyoto Institute of Technology altered a special material called a photonic crystal to change the way light moves, creating pseudogravity, an effect similar to a tiny black hole. The experiment was inspired by Einstein’s theory of relativity and showcased light similar to how it would be if it were passing through a gravitational field. According to Science Alert, this experiment has far-reaching implications for the control and manipulation of light in optics and communications technology.

Oct 19, 2023

A new view of all objects in the universe

Posted by in categories: cosmology, particle physics

The most comprehensive view of the history of the universe ever created has been produced by researchers at The Australian National University (ANU). The study also offers new ideas about how our universe may have started.

Lead author Honorary Associate Professor Charley Lineweaver from ANU said he set out wanting to understand where all the objects in the universe came from.

“When the universe began 13.8 billion years ago in a hot big bang, there were no objects like protons, atoms, people, planets, stars or galaxies. Now the universe is full of such objects,” he said.

Page 89 of 409First8687888990919293Last