Toggle light / dark theme

ALICE solves mystery of light-nuclei survival

Observations of the formation of light-nuclei from high-energy collisions may help in the hunt for dark matter.

Particle collisions at the Large Hadron Collider (LHC) can reach temperatures over one hundred thousand times hotter than at the center of the sun. Yet, somehow, light atomic nuclei and their antimatter counterparts emerge from this scorching environment unscathed, even though the bonds holding the nuclei together would normally be expected to break at a much lower temperature.

Physicists have puzzled for decades over how this is possible, but now the ALICE collaboration has provided experimental evidence of how it happens, with its results published today in Nature.

Short-lived optical flare AT2022zod is an unusual tidal disruption event, astronomers find

An international team of astronomers has investigated a short-lived optical flare designated AT2022zod. As a result, they found evidence indicating that this flare is an unusual tidal disruption event. The findings were presented in a research paper published Dec. 1 on the arXiv pre-print server.

When a star passes close enough to a supermassive black hole and is pulled apart by the black hole’s tidal forces, it triggers the process of disruption, which is known as a tidal disruption event (TDE). Afterward, the tidally disrupted stellar debris starts raining down on the black hole, and radiation emerges from the innermost region of accreting debris, which is an indicator of the presence of a TDE.

Gravitational Waves Expose Hidden Dark Matter Around Black Holes

Researchers have created a fully relativistic model showing that gravitational waves might carry hidden clues about dark matter near massive black holes. New research from scientists at the University of Amsterdam outlines how gravitational waves produced by black holes could offer a way to detec

Imaging Uncovers Hidden Structures in Exploding Stars

“Novae are more than fireworks in our galaxy — they are laboratories for extreme physics,” said Dr. Laura Chomiuk.


What can imaging supernovae (plural for supernova) explosions teach astronomers about their behavior and physical characteristics? This is what a recent study published in Nature Astronomy hopes to address as an international team of researchers investigated the mechanisms behind the thermonuclear eruptions that supernovae cause. This study has the potential to help scientists better understand supernovae, as they are hypothesized to be responsible for spreading the chemical elements and molecules needed for life throughout the universe.

For the study, the researchers used the Georgia State University CHARA Array to observe exploding supernovae from two separate white dwarfs: nova V1674 Her and nova V1405 Cas, which are located approximately 16,200 and 5,500 light-years from Earth, and were observed days 2 & 3 and days 53, 55, & 67 after first light of eruption, also known as t0, respectively. For nova V1674 Her, the researchers observed outflows during days 2 & 3, while they observed this same behavior for nova V1405 Cas during days 53, 55, & 67. The researchers note these contrasting observations challenge longstanding hypotheses regarding supernovae behavior during their eruption periods.

10 Spooky Possibilities of the Multiverse

An exploration of ten spooky aspects of the multiverse and our universe within it.

https://www.patreon.com/johnmichaelgodier.

Music:

Cylinder Eight by Chris Zabriskie is licensed under a Creative Commons Attribution license (https://creativecommons.org/licenses/.
Source: http://chriszabriskie.com/cylinders/
Artist: http://chriszabriskie.com/

Cylinder Five by Chris Zabriskie is licensed under a Creative Commons Attribution license (https://creativecommons.org/licenses/.
Source: http://chriszabriskie.com/cylinders/
Artist: http://chriszabriskie.com/

Darkest Child by Kevin MacLeod is licensed under a Creative Commons Attribution license (https://creativecommons.org/licenses/by/4.0/)

Peculiar supernova SN 2021ukt transitions from Type IIn to Type Ib

Astronomers from the University of California (UC), Berkeley and elsewhere have performed spectroscopic and photometric study of a peculiar supernova designated SN 2021ukt, which underwent a transition from Type IIn to Type Ib. Results of the new study, presented Nov. 28 on the arXiv pre-print server, shed more light on the nature of this supernova.

Ramanujan’s 100-Year-Old Pi Formula That Hides the Secrets of the Universe

A new study reveals that Srinivasa Ramanujan’s century-old formulas for calculating pi unexpectedly emerge within modern theories of critical phenomena, turbulence, and black holes. In school, many of us first encounter the irrational number π (pi) – rounded off as 3.14, with an infinite number o

Scientists Unveil the Most Realistic Black Hole Accretion Model Ever Created

Using cutting-edge algorithms and exascale supercomputers, researchers have created the most realistic simulations yet of matter flowing into black holes. Building on decades of research, a group of computational astrophysicists has reached an important breakthrough: they have created the most de

/* */