Menu

Blog

Archive for the ‘cosmology’ category: Page 351

Jul 26, 2018

Star’s black hole encounter puts Einstein’s theory of gravity to the test

Posted by in categories: cosmology, physics

For more than 20 years, a team of astronomers has tracked a single star whipping around the supermassive black hole at the center of our galaxy at up to 25 million kilometers per hour, or 3% of the speed of light. Now, the team says the close encounter has put Albert Einstein’s theory of gravity to its most rigorous test yet for massive objects, with the light from the star stretched in a way not prescribed by Newtonian gravity. In a study announced today, the team says it has detected a distinctive indicator of Einstein’s general theory of relativity called “gravitational redshift,” in which the star’s light loses energy because of the black hole’s intense gravity.

“It’s really exciting. This is such an amazing observation,” says astronomer Andrea Ghez of the University of California, Los Angeles (UCLA), who heads a rival group that is also tracking the star. “This is a direct test [of relativity] that we’ve both been preparing for for years.”

The star, called S2, is unremarkable apart from a highly elliptical orbit that takes it within 20 billion kilometers, or 17 light-hours, of the Milky Way’s central black hole—closer than any other known star. A team led by Reinhard Genzel at the Max Planck Institute for Extraterrestrial Physics (MPE) in Garching, Germany, has been tracking S2 since the 1990s, first with the European Southern Observatory’s (ESO’s) 3.6-meter New Technology Telescope in Chile’s Atacama Desert and later with ESO’s Very Large Telescope (VLT), made up of four 8-meter instruments. Ghez’s team at UCLA also began to observe the star around the same time with the twin 10-meter Keck telescopes in Hawaii.

Continue reading “Star’s black hole encounter puts Einstein’s theory of gravity to the test” »

Jul 26, 2018

Culmination of 26 years of ESO observations of the heart of the Milky Way

Posted by in categories: cosmology, physics

Observations made with ESO’s Very Large Telescope have for the first time revealed the effects predicted by Einstein’s general relativity on the motion of a star passing through the extreme gravitational field near the supermassive black hole in the centre of the Milky Way. This long-sought result represents the climax of a 26-year-long observation campaign using ESO’s telescopes in Chile.

Obscured by thick clouds of absorbing dust, the closest supermassive black hole to the Earth lies 26 000 light-years away at the centre of the Milky Way. This gravitational monster, which has a mass four million times that of the Sun, is surrounded by a small group of stars orbiting around it at high speed. This extreme environment — the strongest gravitational field in our galaxy — makes it the perfect place to explore gravitational physics, and particularly to test Einstein’s general theory of relativity.

New infrared observations from the exquisitely sensitive GRAVITY [1], SINFONI and NACO instruments on ESO’s Very Large Telescope (VLT) have now allowed astronomers to follow one of these stars, called S2, as it passed very close to the black hole during May 2018. At the closest point this star was at a distance of less than 20 billion kilometres from the black hole and moving at a speed in excess of 25 million kilometres per hour — almost three percent of the speed of light [2].

Read more

Jul 26, 2018

Star spotted speeding near black hole at centre of Milky Way

Posted by in category: cosmology

Chile’s Very Large Telescope tracks S2 star as it reaches mind-boggling speeds by supermassive black hole.

Science correspondent.

Read more

Jul 21, 2018

Black holes, quasars & supernova: The most astounding phenomenon in outer space

Posted by in category: cosmology

Everything you wanted to know about black holes, supernova, and quasars but were afraid to ask.

Read more

Jul 17, 2018

What happens when stars wander around black holes?

Posted by in category: cosmology

Read more

Jul 16, 2018

The Father of the Big Bang Theory

Posted by in categories: cosmology, engineering, military, particle physics

Monsignor Georges Lemaître was a Belgian Roman Catholic priest, physicist and astronomer. He is usually credited with the first definitive formulation of the idea of an expanding universe and what was to become known as the Big Bang theory of the origin of the universe, which Lemaître himself called his “hypothesis of the primeval atom” or the “Cosmic Egg”.

Georges Henri Joseph Édouard Lemaître was born on 17 July 1894 at Charleroi, Belgium. After a classical education at a Jesuit secondary school, the Collège du Sacré-Coeur in Charleroi, he began studying civil engineering at the Catholic University of Leuven (Louvain) at the age of 17. In 1914, he interrupted his studies to serve as an artillery officer in the Belgian army for the duration of World War I, at the end of which he received the Military Cross with palms.

Read more

Jul 15, 2018

A ‘super telescope’ has captured an astounding image of the massive black hole at the centre of our galaxy

Posted by in category: cosmology

An astounding image of the massive black hole at the centre of the Milky Way has been captured by a super telescope in South Africa.

The clearest image yet of the centre of the Milky Way galaxy has been released from South Africa’s shiny new radio telescope, MeerKAT.

This $330 million (R4.4 billion) 64-dish radio telescope will listen to the relatively weak signals from space to help scientists understand what is going on in the far reaches of the universe. It will eventually become part of the Square Kilometre Array (SKA) which will be 50 to 100 times more sensitive than any other radio telescope on earth.

Continue reading “A ‘super telescope’ has captured an astounding image of the massive black hole at the centre of our galaxy” »

Jul 12, 2018

NASA’s Voyager-1 Spacecraft Opens Door On New Way To Look For Dark Matter

Posted by in category: cosmology

NASA’s 40-year-old Voyager-1 spacecraft amazes all with ground-breaking new cosmic ray data from interstellar space.

Read more

Jul 12, 2018

A 4 Billion Light-Year Journey Ends At The South Pole

Posted by in categories: cosmology, particle physics

Physicists Pinpoint The Origin Of A Powerful Neutrino For The First Time Ghostly particles called neutrinos can travel nearly unimpeded across the universe. For the first time, physicists have been able to pinpoint the origin of a powerful neutrino.

Read more

Jul 11, 2018

Physicists set limits on size of neutron stars

Posted by in categories: cosmology, physics

How large is a neutron star? Previous estimates varied from eight to 16 kilometres. Astrophysicists at the Goethe University Frankfurt and the FIAS have now succeeded in determining the size of neutron stars to within 1.5 kilometres by using an elaborate statistical approach supported by data from the measurement of gravitational waves. The researchers’ report appears in the current issue of Physical Review Letters.

Neutron are the densest objects in the universe, with a mass larger than that of our sun compacted into a relatively small sphere whose diameter is comparable to that of the city of Frankfurt. This is actually just a rough estimate, however. For more than 40 years, the determination of the size of has been a holy grail in nuclear physics whose solution would provide important information on the fundamental behaviour of at nuclear densities.

The data from the detection of from merging stars (GW170817) make an important contribution toward solving this puzzle. At the end of 2017, Professor Luciano Rezzolla, Institute for Theoretical Physics at the Goethe University Frankfurt and FIAS, together with his students Elias Most and Lukas Weih already exploited this data to answer a long-standing question about the maximum mass that neutron stars can support before collapsing to a black hole—a result that was also confirmed by various other groups around the world. Following this first important result, the same team, with the help of Professor Juergen Schaffner-Bielich, has worked to set tighter constraints on the size of neutron stars.

Continue reading “Physicists set limits on size of neutron stars” »