Menu

Blog

Archive for the ‘cosmology’ category: Page 208

Jan 23, 2021

Physicists Spotted the Ghosts of Black Holes from Another Universe

Posted by in categories: cosmology, physics

Circa 2018 o.o!


We are not living in the first universe. There were other universes, in other eons, before ours, a group of physicists has said. Like ours, these universes were full of black holes. And we can detect traces of those long-dead black holes in the cosmic microwave background (CMB) — the radioactive remnant of our universe’s violent birth.

At least, that’s the somewhat eccentric view of the group of theorists, including the prominent Oxford University mathematical physicist Roger Penrose (also an important Stephen Hawking collaborator). Penrose and his acolytes argue for a modified version of the Big Bang.

Continue reading “Physicists Spotted the Ghosts of Black Holes from Another Universe” »

Jan 21, 2021

Researchers discover the earliest supermassive black hole and quasar in the universe

Posted by in category: cosmology

Nearly every galaxy hosts a monster at its center—a supermassive black hole millions to billions times the size of the Sun. While there’s still much to learn about these objects, many scientists believe they are crucial to the formation and structure of galaxies. What’s more, some of these black holes are particularly active, whipping up stars, dust and gas into glowing accretion disks emitting powerful radiation into the cosmos as they consume matter around them. These quasars are some of the most distant objects that astronomers can see, and there is now a new record for the farthest one ever observed.

A team of scientists, led by former UC Santa Barbara postdoctoral scholar Feige Wang and including Professor Joe Hennawi and current postdoc Riccardo Nanni, announced the discovery of J0313-1806, the most distant quasar discovered to date. Seen as it would have appeared more than 13 billion years ago, this fully formed distant quasar is also the earliest yet discovered, providing astronomers insight into the formation of massive galaxies in the early universe. The team’s findings were released at the January 2021 meeting of the American Astronomical Society and published in Astrophysical Journal Letters.

Quasars are the most energetic objects in the universe. They occur when gas in the superheated accretion disk around a supermassive black hole is inexorably drawn inwards, shedding energy across the electromagnetic spectrum. This releases enormous amounts of electromagnetic radiation, with the most massive examples easily outshining entire galaxies.

Jan 21, 2021

Astronomers spotted a rare galaxy shutting down star formation

Posted by in category: cosmology

A distant galaxy harbors an active black hole and active star formation at the same time – an unusual coincidence.

Jan 19, 2021

Taured Mystery: The Man Who Vanished As Mysteriously As He Came

Posted by in categories: business, cosmology, internet, security, time travel

The Man Said That His Country Has Been In Existence For 1000 Years And Was A Little Puzzled Why His Country Was Called Andorra On The Map.

It was July 1954 when a smartly dressed man arrives at Haneda Airport in Tokyo, Japan. Much like other passengers, he makes his way to customs. But whatever happened from this point onwards have left all puzzled and concerned. When questioned by the customs officers, the mysterious passenger said he was from Taured, also referred to as Taured Mystery. The mystery man claimed that it was the third time he was visiting Japan from his country. But, to the surprise of officers, they couldn’t find any country named Taured. The primary language of the man, described as Caucasian looking with a beard, was French. However, she was purportedly speaking Japanese and many other languages as well.

Officers were perplexed because they had never heard about any such country. The passport of the man was issued by of course the Taured. The passport looked authentic but the place was not recognized.

Continue reading “Taured Mystery: The Man Who Vanished As Mysteriously As He Came” »

Jan 18, 2021

University of Arizona researchers spot black hole beacon from when universe was young

Posted by in category: cosmology

New research by a University of Arizona-led team suggests two near-Earth asteroids — but Bennu and Ryugu — were actually sheared off and shaped by a by a single crash.

Jan 17, 2021

Is the Physical World a Neural Network?

Posted by in categories: cosmology, particle physics, quantum physics, robotics/AI

Part of the Divine Mind, and so we are.


The most recent observations at both quantum and cosmological scales are casting serious doubts on our current models. For instance, at quantum scale, the latest electronic hydrogen proton radius measurement resulted in a much smaller radius than the one predicted by the standard model of particles physics, which now is off by 4%. At cosmological scale, the amount of observations regarding black holes and galactic formation heading in the direction of a radically different cosmological model, is overwhelming. Black holes have shown being much older than their hosting galaxies, galactic formation is much younger than our models estimates, and there is evidence of at least 64 black holes aligned with respect to their axis of rotation, suggesting the presence of a large scale spatial coherence in angular momentum that is impossible to predict with our current models. Under such scenario, it should not fall as a surprise the absence of a better alternative to unify quantum theory and relativity, and thus connect the very small to the very big, than the idea that the universe is actually a neural network. And for this reason, a theory of everything would be based on it.


As explained in Targemann’s interview to Vanchurin on Futurism, the work of Vanchurin, proposes that we live in a huge neural network that governs everything around us.

Continue reading “Is the Physical World a Neural Network?” »

Jan 16, 2021

Towards Exawatt-Class Lasers: New Concept for Next-Generation Ultra-Intense Lasers

Posted by in categories: cosmology, physics, robotics/AI

Researchers from the Max Planck Society assessed humans’ capabilities for controlling killer AI. Read the details.


Researchers from Osaka University propose a concept for next-generation ultra-intense lasers, possibly increasing the current record from 10 Petawatts to 500 Petawatts.

Ultra-intense lasers with ultra-short pulses and ultra-high energies are powerful tools for exploring unknowns in physics, cosmology, material science, etc. With the help of the famous technology “Chirped Pulse Amplification (CPA)” (2018 Nobel Prize in Physics), the current record has reached 10 Petawatts (or 1016 Watts). In a study recently published in Scientific Reports, researchers from Osaka University proposed a concept for next-generation ultra-intense lasers with a simulated peak power up to the Exawatt class (1 Exawatt equals 1000 Petawatts).

Continue reading “Towards Exawatt-Class Lasers: New Concept for Next-Generation Ultra-Intense Lasers” »

Jan 16, 2021

The incredible physics behind quantum computing | Brian Greene, Michio Kaku, & more | Big Think

Posted by in categories: computing, cosmology, particle physics, quantum physics

The incredible physics behind quantum computing.
Watch the newest video from Big Think: https://bigth.ink/NewVideo.
Learn skills from the world’s top minds at Big Think Edge: https://bigth.ink/Edge.
———————————————————————————
While today’s computers—referred to as classical computers—continue to become more and more powerful, there is a ceiling to their advancement due to the physical limits of the materials used to make them. Quantum computing allows physicists and researchers to exponentially increase computation power, harnessing potential parallel realities to do so.

Quantum computer chips are astoundingly small, about the size of a fingernail. Scientists have to not only build the computer itself but also the ultra-protected environment in which they operate. Total isolation is required to eliminate vibrations and other external influences on synchronized atoms; if the atoms become ‘decoherent’ the quantum computer cannot function.

Continue reading “The incredible physics behind quantum computing | Brian Greene, Michio Kaku, & more | Big Think” »

Jan 16, 2021

Study investigates emission from a distant red quasar

Posted by in categories: cosmology, evolution, existential risks

Using the Atacama Large Millimeter/submillimeter Array (ALMA) in Chile, an international team of astronomers has performed observations of HSC J120505.09−000027.9—the most distant red quasar so far detected and found that it showcases an extended emission of ionized carbon. The finding is reported in a paper published January 4 on arXiv.org.

Quasars, or quasi– (QSOs), are extremely luminous active galactic nuclei (AGN) containing supermassive central black holes with accretion disks. Their redshifts are measured from the strong spectral lines that dominate their visible and . Some QSOs are dust-reddened, hence dubbed red quasars. These objects have a non-negligible amount of dust extinction, but are not completely obscured.

Astronomers are especially interested in studying high-redshift quasars (at redshift higher than 5.0) as they are the most luminous and most distant compact objects in the observable universe. Spectra of such QSOs can be used to estimate the mass of supermassive black holes that constrain the evolution and formation models of quasars. Therefore, could serve as a powerful tool to probe the early universe.

Jan 15, 2021

X-rays surrounding ‘Magnificent 7’ may be traces of sought-after particle

Posted by in categories: cosmology, particle physics

A new study, led by a theoretical physicist at the U.S. Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab), suggests that never-before-observed particles called axions may be the source of unexplained, high-energy X-ray emissions surrounding a group of neutron stars.

First theorized in the 1970s as part of a solution to a fundamental particle physics problem, axions are expected to be produced at the core of stars, and to convert into particles of light, called photons, in the presence of a magnetic field.

Axions may also make up —the mysterious stuff that accounts for an estimated 85 percent of the total mass of the universe, yet we have so far only seen its gravitational effects on ordinary matter. Even if the X-ray excess turns out not to be axions or dark matter, it could still reveal new physics.