Toggle light / dark theme

Transhuman Terminology.

ADHOCRACY
AEONOMICS
A-LIFE
AGORIC SYSTEM

AI-COMPLETE ALEPH ALGERNON AMORTALIST ARACHNIOGRAPHY ARCH-ANARCHY ARCOLOGY ARROW IMPOSSIBILITY THEOREM ARTILECT ASEX ASIMORT ASIMOV ASSEMBLER ATHANASIA ATHANOPHY ATHEOSIS AUGMENT AUTOEVOLUTIONIST AUTOMATED ENGINEERING AUTOMORPHISM AUTOPOTENT AUTOSCIENT BABY UNIVERSE BASEMENT UNIVERSE BEAN DIP CATASTROPHE BEANSTALK BEKENSTEIN BOUND BERSERKER BETELGEUSE-BRAIN BIG CRUNCH BINERATOR BIOCHAUVINISM BIOLOGICAL FUNDAMENTALISM BIONICS BIONOMICS BIOPHILIAC BIOSTASIS B-LIFE BLIGHT BLIND UPLOADING BLUE GOO BOGOSITY FILTER BORGANISM BREAKEVEN POINT BROADCATCHING BRUTE FORCE UPLOADING BUSH ROBOT CALCUTTA SYNDROME CALM TECHNOLOGY CALORIE RESTRICTION CASIMIR EFFECT CEREBROSTHESIS CHINESE ROOM CHRONONAUTS CHURCH-TURING THESIS COBOTS COMPUFORM COMPUTRONIUM CONCENTRATED INTELLIGENCE CONSILIENCE CONNECTIONISM CONTELLIGENCE CONTINUITY IDENTITY THEORY COSMYTHOLOGY CRYOBIOLOGY CRYOCRASTINATE CRYOGENICS CRYONICS CRYONIC SUSPENSION CRYPTO ANARCHY CRYPTOCOSMOLOGY CYBERCIDE CYBERFICTION CYBERGNOSTICISM CYBERIAN CYBERNATE/CYBERNIZE CYBERSPACE/CYBERMATRIX CYBRARIAN CYPHERPUNK DEANIMALIZE DEATH FORWARD DEATHISM DEEP ANARCHY DEFLESH DIGITAL PSEUDONYM DIAMONDOID DISASSEMBLER DISASTERBATION DISTRIBUTED INTELLIGENCE DIVERGENT TRACK HYPOTHESIS DIVERSITY IQ DIVIDUALS DOOMSDAY ARGUMENT DOWNLOAD DRYWARE DUBIFIER DYSON SPHERE ECOCALYPSE ECTOGENESIS

EMBRYOMEME
EMULATION
ENHANCED REALITY
ENVIROCAPITALISM
EPHEMERALISTS
E-PRIME
ESCALATORLOGY
THE ETERNAL LIFE POSTULATE
EUPSYCHIA
EUTHENICS
EVOLUTIONARILY STABLE STRATEGY (ESS)
EVOLUTURE
EXCONOMICS
EXES
EXFORMATION
EXISTENTIAL TECHNOLOGY
EXOPHOBIA
EXOSELF
EXTROPIAN
EXTROPIATE
EXTROPIC
EXTROPOLIS
EXTROPY
FACULTATIVE ANAGOROBE
FAR EDGE PARTY
THE FERMI PARADOX
FEMTOTECHNOLOGY
FLATLANDER
FLUIDENTITY
FOGLET
FORK
FREDKIN’S PARADOX
FUNCTIONAL SOUP
FUTIQUE
FUTURE SHOCK
GALAXY BRAIN
GAUSSIAN
GENEGENEERING
GENETIC ALGORITHM
GENIE
GREEN GOO
GÖDEL’S THEOREM
GOLDEN GOO
GREAT FILTER, THE
GREY GOO
GUY FAWKES SCENARIO
HALLUCINOMEMIC
HIVE COMPUTING
HOMORPH
HPLD
HYPERTEXT
HYPONEIRIA
HYPOTECH

IDEAL IDENTITY
IMMORTALIST
IMMORTECHNICS
IMP
INACTIVATE
INFOGLUT
INFOMORPH
INFORMATION-THEORETICAL DEATH
INLINE UNIVERSITIES
INTERFACER
INTERNALNET
JUPITER-BRAIN
KHAKI GOO
KARDASCHEV TYPES
KNOWBOTS
KOLMOGOROV COMPELXITY
LEONARDO DA VINCI SYNDROME
LINDE SCENARIO
LIQUIDENTITY
LOFSTROM LOOP
LONGEVIST
MASPAR
MATAGLAP
MEGATECHNOLOGY (or MEGASCALE ENGINEERING)
MEMETICS
MEMIE
MEMIUS
MEMOTYPE
MEMOID (or MEMEOID)
MEHUM
MERCHANCY
MESOSCALE
MINDKIND
MOLMAC
MORPHOLOGICAL FREEDOM
MUTUAL REALITY
NANARCHIST
NANARCHY
NANITE
NANOCHONDRIA
NANOFACTURE
NANOMEDICINE
NANOSOME
NANOTECH
(MOLECULAR) NANOTECHNOLOGY
NEG
NEOMORPH
NEOLOGOMANIA
NEOPHILE
NEOPHILIA
NEOPHOBE
NEUROCOMPUTATION
NEURONAUT
NEURON STAR
NEUROPROSTHESIS
NEUROSUSPENSION
NOOTROPIC
NOW SHOCK
NUTRACEUTICAL
OFFLOADING
OMEGA POINT
OMEGON
OMNESCIENCE
O’NEILL COLONY
O’NEILL CYLINDERS
ONTOLOGICAL CONSERVATIVES
OPTIMAL PERSONA
PANCRITICAL RATIONALISM
ORBITAL TOWER
PARTIALATE
PATTERN IDENTITY THEORY
PERICOMPUTER
PERIMELASMA
PERSOGATE
PERVERSION ATTACK
PHARMING
PHYLE
PHYSICAL ESCHATOLOGY
PICO TECHNOLOGY
PIDGIN BRAIN
PINK GOO
PLEXURE
POME
POSTHUMAN
POSTJUDICE
POWERSHIFT
PRISONERS’ DILEMMA
PRIVACY MANAGEMENT
PROLONGEVITY
QUANTUM COMPUTING
QUANTUM CRYPTOGRAPHY
QUASISPECIES
RAPTURE OF THE FUTURE
RED GOO
RED QUEEN PRINCIPLE
RED QUEENED
REMEMBRANCE AGENT
REVERSIBLE
RIF
SANS CEILING HYPOTHESIS
SANTA MACHINE
SAPPER MEME
SCHEME
SENTIENCE QUOTIENT
SHIH
SINGULARITY
SINGULARITARIAN
SKY HOOK
SMART-FACED
SOCIOTYPE
SOLID STATE CIVILIZATION
SPIKE, THE
SPOCK MEME
SPONTANEOUS VOLUNTARISM
SPACE FOUNTAIN
STAR LIFTING
STELLAR HUSBANDRY
STEWARD
STRONG AI POSTULATE
STRONG CONVERGENCE HYPOTHESIS
SUSPENDED ANIMATION
SYNTHESPIAN
TAZ/Temporary Autonomous Zone.
TECHNOCYTE
TECHNOSPHERE
TECHNOCALYPS
TELEOLOGICAL THREAD
THEORETICAL APPLIED SCIENCE
TITHONUS SYNDROME
TIPLER CYLINDER
TIPLERITE
TRANSBIOMORPHOSIS (TRANSBIOLOGICAL METAMORPHOSIS)
TRANSCEND
TRANSCENSION
TRANSCIENT
TRANSCLUSION
TRANSHUMANISM
TRANSHUMANITIES
TRAPDOOR FUNCTION
TURING MACHINE
TURING TEST
ÜBERGOO
UBIQUITOUS COMPUTING
UPLIFT
UPLOADER
UNIVERSAL CONSTRUCTOR
UNIVERSAL IMMORTALISM
UNIVERSAL TURING MACHINE
UTILITY FOG
VACCIME
VASTEN
VENTURISM
VIEWQUAKE
VIRIAN
VIRION
VIRTUAL COMMUNITY
VIRTUAL RIGHTS
VITOLOGY
VIVISYSTEM
VON NEUMANN MACHINE
VON NEUMANN PROBE
WEBORIZE
WETWARE
WORMHOLE
XENOBIOLOGY
XENOEVOLUTURE
XEROPHILIA
XOXER
ZERO KNOWLEDGE PROOF


Researchers have developed a computer algorithm that doesn’t solve problems but instead creates them for the purpose of evaluating quantum computers.

The desire for quantum computers stems from their potential to solve certain hard problems faster than classical computers. But those bragging rights haven’t actually been earned yet, as no experiment has shown this presumed speedup. Researchers from the University of Southern California, Los Angeles, and the Complutense University of Madrid, Spain, have devised an algorithm that generates extra hard problems that could offer quantum computers the chance to prove their worth.

The problems that the team focused on belong to the general class of optimization problems. The main example is the Ising model, which describes the interaction of a large number of spins within a lattice. The goal is to find the ground state, which is the orientation of spins that minimizes the interaction energy. The problem is computationally hard because there are many local minima (pseudo-ground-states) that can fool a search algorithm.

Read more

The researchers say that the monochrome painting — a dime’s width across — is a proof-of-concept that the extremely precise technique can be used to build nanoscale chip-based devices like computer circuits, conductive carbon nanotubes, and for extremely efficient targeted drug delivery.

In order to reproduce the painting, the researchers used a technique first described by Rothemund and colleagues at IBM in 2009. The first step of the process involves folding DNA strands to create the desired shape, with short “staple strands” being used to literally staple the molecules. Then this pattern, which, at this stage, is floating in a saline solution, is poured into patches on a chip whose shapes match the DNA origami’s.

The folded DNA now acts as scaffolding onto which researchers then install fluorescent molecules inside microscopic light sources called photonic crystal cavities (PCC) — much like putting light bulbs into lamps.

Read more

As far as the whole mind-to-computer thing I totally agree.

The name of the game, for me at least, when it comes to this type of thing is continuity of consciousness. Without that you are nothing more than a copy of another person, not the person themselves. That said, if there were to be a very, very slow process where your natural neurons are replaced by artificial ones, with both types working together seamlessly, THEN I’d be first in line.


The future looks bright, except when it doesn’t. Here are 10 exceptionally regrettable developments we can expect in the coming decades.

Listed in no particular order.

1. Virtually anyone will be able to create their own pandemic

Earlier this year, Oxford’s Global Priorities Project compiled a list of catastrophes that could kill off 10 percent or more of the human population. High on the list was a deliberately engineered pandemic, and the authors warned that it could happen in as few as five years.

Read more

The universal quantum gate to enable long distance communications with QC without degradation.


Scientists have now developed a universal quantum gate, which could become the key component in a quantum computer.

Light particles completely ignore each other. In order that these particles can nevertheless switch each other when processing quantum information, researchers at the Max Planck Institute of Quantum Optics in Garching have now developed a universal quantum gate. Quantum gates are essential elements of a quantum computer. Switching them with photons, i.e. light particles, would have practical advantages over operating them with other carriers of quantum information.

The light-saber fights of the Jedi and Sith in the Star Wars saga may well suggest something different, but light beams do not notice each other. No matter how high their intensity, they cut through each other without hindrance. When individual light particles meet, as is necessary for some applications of quantum information technology, nothing at all happens. Photons can therefore not switch each other just like that, as would have to be the case if one wanted to use them to operate a quantum gate, the elementary computing unit of a quantum computer.

At the National Institute of Biomedical Imaging and Bioengineering (NIBIB) and Tufts University a team has developed a microfluidic chip that mimics human tissue for use in drug testing applications. The chip is based on a silk gel that overcomes the limitations of polydimethylsiloxane (PDMS), a silicon material widely used to host living cells within microfluidic devices. As an example, PDMS has problems handling lipids, absorbing them instead of letting them move freely along with other nearby compounds and so not applicable with lipid-based compounds. Additionally, PDMS is not biodegradable and so a small device based on it can’t easily be used as an implantable. Silk, on the other hand, just needed a bit of engineering to make a candidate that overcomes many of PDMS’s limitations.

Read more