Toggle light / dark theme

Winfried Hensinger likes Star Trek. “It goes all the way back to primary school,” said the director of the Sussex Centre for Quantum Technologies in England. “I wanted to be science officer on the Enterprise, so I worked out in about grade five that I wanted to study physics.”

Today, his day-to-day work on abstract notions of quantum mechanics would make even Spock’s ears perk up.

“[Quantum computing] has a huge appeal for young people,” Hensinger told Digital Trends, “because it’s basically science fiction.” When he started in the field, it was largely confined to theoretical study. Today, the most promising projects are within reach of producing a universal quantum computer — something that was as sci-fi as Star Trek just a few years ago.

Read more

No surprise; we knew this was going to happen.


China launched its second space lab, Tiangong-2, on Thursday, paving the way for a permanent space station that the country plans to build around 2022. In a space science first, a human brain-computer interaction test system, developed by Tianjin University, has been installed in the lab and it is set to conduct a series of experiments in space, People’s Daily reported. According to Ming Dong, the leader of the research team in charge of the brain-computer test system, the brain-computer interaction will eventually be the highest form of human-machine communication.

Read more

Scientists at Vanderbilt University have developed a first-ever implantable artificial kidney. The artificial kidney contains a microchip filter and living kidney cells that can function using the patient’s heart, and this bio-synthetic kidney acts like the real organ, removing salt, water and waste products to keep patients with kidney failure from relying on dialysis.

The key to this new development is a breakthrough in the microchip itself, which uses silicon nanotechnology. “[Silicon nanotechnology] uses the same processes that were developed by the microelectronics industry for computers,” said Dr. William H. Fissell IV, who led the team that developed the device.

The microchips are affordable, precise, and function as an ideal filter.

Read more

Nice.


Researchers have developed a new technology that can help read brain signals directly and may also aid people with movement disabilities to better communicate their thoughts and emotions. The technology involves a multi-electrode array implanted in the brain to directly read signals from a region that ordinarily directs hand and arm movements used, for example, to move a computer mouse.

The algorithms translate those signals and help to make letter selections.

“Our results demonstrate that this interface may have great promise for use in people as it enables a typing rate sufficient for a meaningful conversation,” said Paul Nuyujukian, postdoctoral student at Stanford University in California, US.

This is not that far fetch especially when we have seen DARPA’s efforts around BMI, the nanobot technology being experimented on to enable BMI, stent technology as well that is being looked at for BMI, etc. which all leads us into the concept of superhumans.


“Humans are so slow” says Elon Musk, so let’s become AI-human symbiotes instead.

Read more

And, we all have heard all of the horrorr stories of a botch surgery or treatment performed by a MD who was a fraud. Well, our friends on the Dark Web are at work again in supplying anyone willing to pay fake diplomas & certifications. The challenge is how do companies and agencies validate? Something to ponder as we all know hackers can also forge educational records as well.


Criminals on the Dark Web (a lawless, unregulated part of the Internet) are supplying fake diplomas and employment certifications to anyone with a few hundred bucks.

According to Israeli threat intelligence firm Sixgill, people are even hiring hackers to penetrate university computer systems to alter grades.

The company has pinpointed multiple vendors selling degrees and accreditation that can easily be mistaken for being legitimate, so the market for fraudulent documents is booming.

Condensing electrons into Quantum Wires to advance QC on multiple devices as well as other areas of technology.


Researchers have observed quantum effects in electrons by squeezing them into one-dimensional ‘quantum wires’ and observing the interactions between them. The results could be used to aid in the development of quantum technologies, including quantum computing.

Scientists have controlled electrons by packing them so tightly that they start to display quantum effects, using an extension of the technology currently used to make computer processors. The technique, reported in the journal Nature Communications, has uncovered properties of quantum matter that could pave a way to new quantum technologies.

The ability to control electrons in this way may lay the groundwork for many technological advances, including quantum computers that can solve problems fundamentally intractable by modern electronics. Before such technologies become practical however, researchers need to better understand quantum, or wave-like, particles, and more importantly, the interactions between them.

Nice article; however, disappointed that the author expanded the exploration of programming in Quantum to include Google, MIT, U. Sydney, etc. who all have been exploring the programming on QC. D-Wave indeed is doing a lot in this space and has been even training numerous US Government personnel on QC; just would be interesting to learn more about the advances in this space from other players who have been sharing for several months their breakthroughs in programming QC.


The jury is still out when it comes to how wide-ranging the application set and market potential for quantum computing will be. Optimistic estimates project that in the 2020s it will be a billion-dollar field, while others expect the novelty will wear off and the one company behind the actual production of quantum annealing machines will go bust.

Ultimately, whichever direction the market goes with quantum computing will depend on two things. First, the ability for applications of sufficient value to warrant the cost of quantum systems have to be in place. Second, and connected to that point, is the fact that enough problems can be mapped to these machines—a tricky problem that if not solved, will lead to a limited ecosystem of capabilities and, of course, developers.

There is no doubt D-Wave understands this. The company is getting in front of those challenges by hosting quantum computing programming courses designed to onboard new developers. As one might imagine, however, determining the right background for participants is as nebulous as the future of the quantum computing ecosystem.