Menu

Blog

Archive for the ‘computing’ category: Page 717

Oct 5, 2016

Quantum computing: Trapping single atoms in a uniform fashion

Posted by in categories: computing, particle physics, quantum physics

Single neutral atoms trapped individually in optical microtraps are incredibly useful tools for studying quantum physics, as the atoms then exist in complete isolation from the environment. Arrays of optical microtraps containing single atoms could enable quantum logic devices, quantum information processing, and quantum simulation.

While single atom trapping has already been achieved, there are still many challenges to overcome. One such challenge is making sure each trap holds no more than one atom at a time, and also keeping it there so it won’t escape. This requires uniform optical microtraps, which have yet been fully realized.

Now, Ken’ichi Nakagawa and co‐workers at the University of Electro‐Communications, Tokyo, Japan, together with scientists across Japan and China, have successfully demonstrated an optimization method for ensuring the creation of uniform holographic microtrap arrays to capture single rubidium (87Rb) atoms.

Continue reading “Quantum computing: Trapping single atoms in a uniform fashion” »

Oct 5, 2016

Turning to the brain to reboot computing

Posted by in categories: computing, information science, neuroscience, physics

Computation is stuck in a rut. The integrated circuits that powered the past 50 years of technological revolution are reaching their physical limits.

This predicament has computer scientists scrambling for new ideas: new devices built using novel physics, new ways of organizing units within computers and even algorithms that use new or existing systems more efficiently. To help coordinate new ideas, Sandia National Laboratories has assisted organizing the Institute of Electrical and Electronics Engineers (IEEE) International Conference on Rebooting Computing held Oct. 17–19.

Researchers from Sandia’s Data-driven and Neural Computing Dept. will present three papers at the conference, highlighting the breadth of potential non-traditional neural computing applications.

Read more

Oct 5, 2016

Watch a Quantum Computing Expert Describe How the World’s About to Change

Posted by in categories: computing, quantum physics, robotics/AI

https://youtube.com/watch?v=2q4z6HnB-Tg

This type of computer not really 4 personal use. Because it calculates in every possible way its task in a fraction of second. I belive that this type of computer is built to run ai. Or to run recognition software just to give example. But just imagine the possibilities.


Quantum physics, with its descriptions of bizarre properties like entanglement and superposition, can sound like a science fiction fever dream. Yet this branch of physics, no matter how counterintuitive it seems sometimes, describes the universe all around us: As physicists have told often told me, we live in a quantum world. Soon, this will be better reflected in our technology, and everything it can do.

Continue reading “Watch a Quantum Computing Expert Describe How the World’s About to Change” »

Oct 5, 2016

Tech billionaires are asking scientists for help breaking humans out of the computer simulation they think they might be trapped in

Posted by in category: computing

Two tech billionaires might be working with scientists to try to break us out of what they believe is a computer simulation controlled by someone else.

Read more

Oct 4, 2016

Optical forces used to make rewritable 3D holographic materials

Posted by in categories: biological, computing, nanotechnology, tractor beam

(Phys.org)—Researchers have used the pressure of light—also called optical forces or sometimes “tractor beams”—to create a new type of rewritable, dynamic 3D holographic material. Unlike other 3D holographic materials, the new material can be rapidly written and erased many times, and can also store information without using any external energy. The new material has potential applications in 3D holographic displays, large-scale volumetric data storage devices, biosensors, tunable lasers, optical lenses, and metamaterials.

The research was conducted by a multidisciplinary team led by Yunuen Montelongo at Imperial College London and Ali K. Yetisen at Harvard University and MIT. In recent papers published in Nature Communications and Applied Physics Letters, the researchers demonstrated the reversible optical manipulation of nanostructured materials, which they used to fabricate active 3D holograms, lenses, and memory devices.

The key to creating the 3D holographic material with these advantages was to use optical forces to reversibly modify the material’s properties. The optical forces are produced by the interference of two or more laser beams, which creates an optical pressure capable of moving nanoscale structures. So far, optical forces have mainly been used for just one application: optical tweezers, which can hold and move tiny objects and are mostly used in biological applications.

Continue reading “Optical forces used to make rewritable 3D holographic materials” »

Oct 4, 2016

Code in Virtual Reality

Posted by in categories: computing, virtual reality

Into programming? Now you can be *inside* programming.

Read more

Oct 4, 2016

Quantum computing: What businesses need to know

Posted by in categories: business, computing, particle physics, quantum physics

Most people will be familiar with Moore’s Law which states that the number of transistors it’s possible to get on a microprocessor doubles every 18 months. If this holds true it means that some time in the 2020s we’ll be measuring these circuits on an atomic scale.

You might think that that’s where everything comes to a juddering halt. But the next step from this is the creation of quantum computers which use the properties of atoms and molecules to perform processing and memory tasks.

If this all sounds a bit sci-fi, it’s because practical quantum computers are still some way in the future. However, scientists have already succeeded in building basic quantum computers that can perform certain calculations. And when practical quantum computing does arrive it has the potential to bring about a change as great as that delivered by the microchip.

Continue reading “Quantum computing: What businesses need to know” »

Oct 4, 2016

New devices that emulate human biological synapses

Posted by in categories: biological, computing, engineering, neuroscience

Check this out.


Engineers at the University of Massachusetts Amherst are leading a research team that is developing a new type of nanodevice for computer microprocessors that can mimic the functioning of a biological synapse—the place where a signal passes from one nerve cell to another in the body. The work is featured in the advance online publication of Nature Materials.

Such neuromorphic computing in which microprocessors are configured more like human brains is one of the most promising transformative computing technologies currently under study.

Continue reading “New devices that emulate human biological synapses” »

Oct 3, 2016

MIT applies soft touch to robots with programmable 3D-printed skins

Posted by in categories: 3D printing, computing, robotics/AI

Spectators of the DARPA Robotics Challenge finals in 2015 would have noticed that many of the competing robots were padded up for protection in case they took a tumble. MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL) is looking to build customizable shock-absorbing protection into robots by using 3D printing to produce soft materials that not only dampen the impact of falls, but also allows them to carry out safer, more precise movements.

Robotics engineers have long had a keen interest in soft materials. At their simplest, such materials can protect robots against falls and collisions, but can also protect people in environments were robots and humans are increasingly working together. Going beyond this, soft materials also allow for making completely soft robots that can mimic animal design.

Continue reading “MIT applies soft touch to robots with programmable 3D-printed skins” »

Oct 3, 2016

Smarter thread

Posted by in categories: biotech/medical, chemistry, computing, health, mobile phones, nanotechnology

I never get tired in circuitry thread and any new findings.


Tufts University engineers say that revolutionary health diagnostics may be hanging on a thread—one of many threads they have created that integrate nano-scale sensors, electronics and microfluidics into threads ranging from simple cotton to sophisticated synthetics. “We think thread-based devices could potentially be used as smart sutures for surgical implants, smart bandages to monitor wound healing, or integrated with textile or fabric as personalized health monitors and point-of-care diagnostics,” says Sameer Sonkusale, Ph.D., director of the interdisciplinary Nano Lab in the Department of Electrical and Computer Engineering at Tufts School of Engineering, Medford/Somerville, Mass.

Researchers dipped a variety of conductive threads in physical and chemical sensing compounds and connected them to wireless electronic circuitry. The threads, sutured into tissues of rats, collected data on tissue health (pressure, stress, strain and temperature), pH and glucose levels. The data helps determine how wounds are healing, whether infection is emerging or whether the body’s chemistry is out of balance. Thread’s natural wicking properties draw fluids to the sensing compounds. Resulting data is transmitted wirelessly to a cell phone and computer.

Continue reading “Smarter thread” »