Toggle light / dark theme

We Just Found a Mind-blowing New World of Electrostatic Biology

Support this channel on Patreon to help me make this a full time job: https://www.patreon.com/whatdamath (Unreleased videos, extra footage, DMs, no ads)
Alternatively, PayPal donations can be sent here: http://paypal.me/whatdamath.
Get a Wonderful Person Tee: https://teespring.com/stores/whatdamath.
More cool designs are on Amazon: https://amzn.to/3QFIrFX

Hello and welcome! My name is Anton and in this video, we will talk about a strange electrostatic world of tiny organisms.
Links:
https://www.pnas.org/doi/epdf/10.1073/pnas.2503555122
https://www.cell.com/action/showPdf?pii=S0960-9822%2823%2900674-7
http://cell.com/current-biology/fulltext/S0960-9822(23)00772-8
Other videos:


#biology #science #electrostatics.

0:00 Static phenomena and electrostatic ecology.
1:50 Pollen and bees.
3:00 Flying spiders and ballooning.
4:10 Ticks.
4:40 Electrosensation.
5:40 Worms and jumping.
7:50 Worm parasites.
9:50 Practical applications and aeroplankton.

Enjoy and please subscribe.

Bitcoin/Ethereum to spare? Donate them here to help this channel grow!
bc1qnkl3nk0zt7w0xzrgur9pnkcduj7a3xxllcn7d4
or ETH: 0x60f088B10b03115405d313f964BeA93eF0Bd3DbF

The hardware used to record these videos:

A smashing success: Relativistic Heavy Ion Collider wraps up final collisions

Just after 9 a.m. on Friday, Feb. 6, 2026, final beams of oxygen ions—oxygen atoms stripped of their electrons—circulated through the twin 2.4-mile-circumference rings of the Relativistic Heavy Ion Collider (RHIC) and crashed into one another at nearly the speed of light inside the collider’s two house-sized particle detectors, STAR and sPHENIX. RHIC, a nuclear physics research facility at the U.S. Department of Energy’s (DOE) Brookhaven National Laboratory has been smashing atoms since the summer of 2000. The final collisions cap a quarter century of remarkable experiments using 10 different atomic species colliding over a wide range of energies in different configurations.

The RHIC program has produced groundbreaking discoveries about the building blocks of matter and the nature of proton spin and technological advances in accelerators, detectors, and computing that have far surpassed scientists’ expectations when this discovery machine first turned on.

“RHIC has been one of the most successful user facilities operated by the DOE Office of Science, serving thousands of scientists from across the nation and around the globe,” said DOE Under Secretary for Science Darío Gil. “Supporting these one-of-a-kind research facilities pushes the limits of technology and expands our understanding of our world through transformational science—central pillars of DOE’s mission to ensure America’s security and prosperity.”

Light-based Ising computer runs at room temperature and stays stable for hours

A team of researchers at Queen’s University has developed a powerful new kind of computing machine that uses light to take on complex problems such as protein folding (for drug discovery) and number partitioning (for cryptography). Built from off-the-shelf components, it also operates at room temperature and remains remarkably stable while performing billions of operations per second. The research was published in Nature.

The breakthrough shows that it is possible to build a practical and scalable machine that can tackle extremely difficult problems.

The project, led by Bhavin Shastri, Canada Research Chair in Neuromorphic Photonic Computing and professor in the Department of Physics, Engineering Physics, and Astronomy, with a team of his graduate students including Nayem Al Kayed and Hugh Morison, uses commercially available lasers, fiber optics, and modulators—the same technology that powers today’s internet infrastructure. The team partnered with McGill University researcher David Plant and his graduate student Charles St-Arnault.

Quantum Teleportation Was Performed Over The Internet For The First Time

Scientists achieved the ‘impossible’ in 2024, teleporting a quantum state through more than 30 kilometers amid a torrent of internet traffic.


In 2024, a quantum state of light was successfully teleported through more than 30 kilometers (around 18 miles) of fiber optic cable amid a torrent of internet traffic – a feat of engineering once considered impossible.

The impressive demonstration by researchers in the US may not help you beam to work to beat the morning traffic, or download your favorite cat videos faster.

However, the ability to teleport quantum states through existing infrastructure represents a monumental step towards achieving a quantum-connected computing network, enhanced encryption, or powerful new methods of sensing.

Los Alamos Forms Quantum Computing-Focused Research Center

PRESS RELEASE — Los Alamos National Laboratory has formed the Center for Quantum Computing, which will bring together the Lab’s diverse quantum computing research capabilities. Headquartered in downtown Los Alamos, the Center for Quantum Computing will consolidate the Laboratory’s expertise in national security applications, quantum algorithms, quantum computer science and workforce development in a shared research space.

“This new center of excellence will bring together the Laboratory’s quantum computing research capabilities that support Department of Energy, Defense and New Mexico state initiatives to achieve a critical mass of expertise greater than the individual parts,” said Mark Chadwick, associate Laboratory director for Simulation, Computing and Theory. “This development highlights our commitment to supporting the next generation of U.S. scientific and technological innovation in quantum computing, especially as the technology can support key Los Alamos missions.”

The center will bring together as many as three dozen quantum researchers from across the Lab. The center’s formation occurs at a pivotal time for the development of quantum computing, as Lab researchers partner with private industry and on a number of state and federal quantum computing initiatives to bring this high-priority technology closer to fruition. Laboratory researchers may include those working with the DARPA Quantum Benchmarking Initiative, the DOE’s Quantum Science Center, the National Nuclear Security Administration Advanced Simulation and Computing program’s Beyond Moore’s Law project, and multiple Laboratory Directed Research and Development projects.

New type of magnetism discovered in 2D materials to help store data

Researchers have discovered a new type of magnetism in 2D materials that can help store data.

The team led by researchers from the University of Stuttgart experimentally demonstrated the previously unknown form of magnetism in atomically thin material layers.

Researchers revealed that the discovery is highly relevant for future magnetic data storage technologies and advances the fundamental understanding of magnetic interactions in two-dimensional systems.

This paper-thin chip turns invisible light into a steerable beam

Researchers have built a paper-thin chip that converts infrared light into visible light and directs it precisely, all without mechanical motion. The design overcomes a long-standing efficiency-versus-control problem in light-shaping materials. This opens the door to tiny, highly efficient light sources integrated directly onto chips.

Computer simulations reveal hurricane currents can knock down surface wave heights

Using advanced computer simulations, researchers from the University of Rhode Island’s Graduate School of Oceanography (GSO) have concluded how and why strong ocean currents modify surface waves. “Our primary finding is that hurricane-generated ocean currents can substantially reduce both the height and the dominant period of hurricane waves,” said Isaac Ginis, URI professor of oceanography. “The magnitude of wave reduction depends strongly on how accurately ocean currents are predicted. This highlights the importance of using fully coupled wave-ocean models when forecasting hurricane waves.”

Ginis conducted the research with URI Professor Tetsu Hara and Angelos Papandreou, who earned his Ph.D. in oceanography from URI in December 2025. Their results were published in a peer-reviewed article in the Journal of Physical Oceanography in January 2026.

According to Ginis, waves are most strongly reduced by currents on the front right of the storm, where winds, waves, and currents are typically strongest.

/* */