Menu

Blog

Archive for the ‘computing’ category: Page 6

Oct 8, 2020

An electrical trigger fires single, identical photons

Posted by in categories: computing, quantum physics

Secure telecommunications networks and rapid information processing make much of modern life possible. To provide more secure, faster, and higher-performance information sharing than is currently possible, scientists and engineers are designing next-generation devices that harness the rules of quantum physics. Those designs rely on single photons to encode and transmit information across quantum networks and between quantum chips. However, tools for generating single photons do not yet offer the precision and stability required for quantum information technology.

Now, as reported recently in the journal Science Advances, researchers have found a way to generate single, identical photons on demand. By positioning a metallic probe over a designated point in a common 2-D semiconductor material, the team led by researchers at the U.S. Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) has triggered a emission electrically. The photon’s properties may be simply adjusted by changing the .

“The demonstration of electrically driven single-photon emission at a precise point constitutes a big step in the quest for integrable quantum technologies,” said Alex Weber-Bargioni, a staff scientist at Berkeley Lab’s Molecular Foundry who led the project. The research is part of the Center for Novel Pathways to Quantum Coherence in Materials (NPQC), an Energy Frontier Research Center sponsored by the Department of Energy, whose overarching goal is to find new approaches to protect and control quantum memory that can provide new insights into novel materials and designs for quantum computing technology.

Oct 7, 2020

How I Cornered the Bitcoin Mining Market Using a Quantum Computer (Theoretically!)

Posted by in categories: bitcoin, computing, quantum physics

Whenever I tell my friends about the potential of Quantum Computing, for example, how a Quantum Computer (QC) can do a large number of calculations in parallel worlds, they look at me like I’m kind of crazy.

Oct 7, 2020

Tungsten optical disc can store data for 1 billion years

Posted by in category: computing

O,.o.


When you need to tell the future how cool you were, data longevity is key. A team of researches might have created a data storage medium for the ages with tungsten and silicon nitride.

Continue reading “Tungsten optical disc can store data for 1 billion years” »

Oct 7, 2020

The Coding School, IBM Quantum Provide Free Quantum Education to 5,000 Students Around the World

Posted by in categories: computing, education, quantum physics

LOS ANGELES, Oct. 6, 2020 /PRNewswire/ — The Coding School is collaborating with IBM Quantum to offer a first-of-its-kind quantum computing course for 5,000 high school students and above, designed to make quantum education globally accessible and to provide high-quality virtual STEM education. To ensure an equitable future quantum workforce, the course is free. Students can apply here.

Oct 6, 2020

Self-healing, self-monitoring chip rearranges circuit if damaged

Posted by in category: computing

Circa 2013


A standard computer is a complex group of individual parts working together as a whole — RAM, some kind of data storage, a processor, and so on. When one of those integral parts breaks, the computer is rendered useless and the part must be replaced, but what if the computer could begin routing the broken part’s tasks through the parts that are still functional? Computers can’t do that just yet, but researchers have now managed to coax a microchip into doing so.

Continue reading “Self-healing, self-monitoring chip rearranges circuit if damaged” »

Oct 6, 2020

Verified quantum information scrambling

Posted by in categories: computing, quantum physics

Circa 2019


Quantum scrambling is the dispersal of local information into many-body quantum entanglements and correlations distributed throughout an entire system. This concept accompanies the dynamics of thermalization in closed quantum systems, and has recently emerged as a powerful tool for characterizing chaos in black holes1,2,3,4. However, the direct experimental measurement of quantum scrambling is difficult, owing to the exponential complexity of ergodic many-body entangled states. One way to characterize quantum scrambling is to measure an out-of-time-ordered correlation function (OTOC); however, because scrambling leads to their decay, OTOCs do not generally discriminate between quantum scrambling and ordinary decoherence. Here we implement a quantum circuit that provides a positive test for the scrambling features of a given unitary process5,6. This approach conditionally teleports a quantum state through the circuit, providing an unambiguous test for whether scrambling has occurred, while simultaneously measuring an OTOC. We engineer quantum scrambling processes through a tunable three-qubit unitary operation as part of a seven-qubit circuit on an ion trap quantum computer. Measured teleportation fidelities are typically about 80 per cent, and enable us to experimentally bound the scrambling-induced decay of the corresponding OTOC measurement.

Oct 6, 2020

Stanene is ‘100% efficient’, could finally replace copper wires in silicon chips

Posted by in categories: computing, particle physics

Move over, graphene and carbyne — stanene, with 100% electrical efficiency at temperatures up to 100 degrees Celsius (212F), is here, and it wants to replace the crummy, high-resistance copper wires that are a big limiting factor in current computer chips. Where graphene is a single-atom-thick layer of carbon, stanene is a single-atom-thick layer of tin.

Oct 6, 2020

AMD’s Infinity Cache May Solve Big Navi’s Rumored Mediocre Memory Bandwidth

Posted by in category: computing

O,.o.


AMD has patented Infinity Cache, lending credence to the rumors of its existence.

Continue reading “AMD’s Infinity Cache May Solve Big Navi’s Rumored Mediocre Memory Bandwidth” »

Oct 6, 2020

Intel created a superconducting test chip for quantum computing

Posted by in categories: computing, quantum physics

Circa 2017


Quantum computing is the next big technological revolution, and it’s coming sooner than you might think. IBM unveiled its own quantum processor this past May, scientists have been experimenting with silicon-laced diamonds (and basic silicon, too) as a quantum computing substrate, Google is already looking at cloud-based solutions and Microsoft is already creating a new coding language for the technology. Now Intel has taken another big step towards a quantum computing reality: the company has created a new superconducting chip using advanced material science and manufacturing techniques, and delivered it to Intel’s research partner in the Netherlands, QuTech.

Continue reading “Intel created a superconducting test chip for quantum computing” »

Oct 6, 2020

Solid-state qubits integrated with superconducting through-silicon vias

Posted by in categories: computing, engineering, quantum physics

O,.o.


As superconducting qubit circuits become more complex, addressing a large array of qubits becomes a challenging engineering problem. Dense arrays of qubits benefit from, and may require, access via the third dimension to alleviate interconnect crowding. Through-silicon vias (TSVs) represent a promising approach to three-dimensional (3D) integration in superconducting qubit arrays—provided they are compact enough to support densely-packed qubit systems without compromising qubit performance or low-loss signal and control routing. In this work, we demonstrate the integration of superconducting, high-aspect ratio TSVs—10 μm wide by 20 μm long by 200 μm deep—with superconducting qubits. We utilize TSVs for baseband control and high-fidelity microwave readout of qubits using a two-chip, bump-bonded architecture. We also validate the fabrication of qubits directly upon the surface of a TSV-integrated chip. These key 3D-integration milestones pave the way for the control and readout of high-density superconducting qubit arrays using superconducting TSVs.

Page 6 of 358First345678910Last