Menu

Blog

Archive for the ‘computing’ category: Page 555

Mar 2, 2020

Realization of efficient quantum gates with a superconducting qubit-qutrit circuit

Posted by in categories: computing, quantum physics

Circa 2019 the quantum computer could control time.


Scientific Reports volume 9, Article number: 13389 ( 2019 ) Cite this article.

Mar 2, 2020

Scientists measure electron spin qubit without demolishing it

Posted by in categories: computing, particle physics, quantum physics

A group of scientists from the RIKEN Center for Emergent Matter Science in Japan has succeeded in taking repeated measurements of the spin of an electron in a silicon quantum dot (QD) without changing its spin in the process. This type of “non-demolition” measurement is important for creating quantum computers that are fault-tolerant. Quantum computers would make it easier to perform certain classes of calculations such as many-body problems, which are extremely difficult and time-consuming for conventional computers. Essentially, the involve measuring a quantum value that is never in a single state like a conventional transistor, but instead exists as a “superimposed state”—in the same way that Schrodinger’s famous cat cannot be said to be alive or dead until it is observed. Using such systems, it is possible to conduct calculations with a qubit that is a superimposition of two values, and then determine statistically what the correct result is. Quantum computers that use single electron spins in silicon QDs are seen as attractive due to their potential scalability and because silicon is already widely used in electronics technology.

The key difficulty with developing quantum computers, however, is that they are very sensitive to external noise, making error correction critical. So far, researchers have succeeded in developing single electron spins in silicon QDs with a long information retention time and high-precision quantum operation, but quantum non-demolition measurement—a key to effective error correction—has proven elusive. The conventional method for reading out single electron spins in silicon is to convert the spins into charges that can be rapidly detected, but unfortunately, the electron spin is affected by the detection process.

Now, in research published in Nature Communications, the RIKEN team has achieved such non-demolition measurement. The key insight that allowed the group to make the advance was to use the Ising type interaction model—a model of ferromagnetism that looks at how the electron spins of neighboring atoms become aligned, leading to the formation of ferromagnetism in the entire lattice. Essentially, they were able to transfer the spin information—up or down—of an electron in a QD to another electron in the neighboring QD using the Ising type interaction in a magnetic field, and then could measure the spin of the neighbor using the conventional method, so that they could leave the original spin unaffected, and could carry out repeated and rapid measurements of the neighbor.

Mar 1, 2020

New Electronic State of Matter May Lead to Quantum Teleportation

Posted by in categories: computing, quantum physics

Scientists uncovered a new state of matter that could lead us to many exciting new forms of quantum computing and teleportation.

Feb 28, 2020

Unconscious patients can now ‘speak’ with brain-computer interface tech

Posted by in categories: biotech/medical, computing, neuroscience

When you see an unconscious patient in a movie, you sometimes see their thoughts onscreen (like in The 9th Life of Louis Drax, above) or at least hear a voiceover.

That may not entirely stay in science fiction. Adrian Owen, neuroscientist and Professor of Cognitive Neuroscience and Imaging at the University of Western Ontario, Canada, and his research team are using brain-computer interfaces with advanced technology to get answers directly from people who can’t answer for themselves any other way. Any critical decisions for patients unable to communicate are usually made for them.

Feb 27, 2020

Physicists may have accidentally discovered a new state of matter

Posted by in categories: climatology, computing, mobile phones, physics

Humans have been studying electric charge for thousands of years, and the results have shaped modern civilization. Our daily lives depend on electric lighting, smartphones, cars, and computers, in ways that the first individuals to take note of a static shock or a bolt of lightning could never have imagined.

Now, physicists at Northeastern have discovered a new way to manipulate . And the changes to the future of our technology could be monumental.

“When such phenomena are discovered, imagination is the limit,” says Swastik Kar, an associate professor of physics. “It could change the way we can detect and communicate signals. It could change the way we can sense things and the storage of information, and possibilities that we may not have even thought of yet.”

Feb 27, 2020

Quantum researchers able to split one photon into three

Posted by in categories: computing, quantum physics

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo report the first occurrence of directly splitting one photon into three.

The occurrence, the first of its kind, used the spontaneous parametric down-conversion method (SPDC) in quantum optics and created what quantum optics researchers call a non-Gaussian state of light. A non-Gaussian state of light is considered a critical ingredient to gain a quantum advantage.

“It was understood that there were limits to the type of entanglement generated with the two-photon version, but these results form the basis of an exciting new paradigm of three-photon ,” said Chris Wilson, a principle investigator at IQC faculty member and a professor of Electrical and Computer Engineering at Waterloo.

Feb 26, 2020

Katherine Johnson, famed NASA mathematician and inspiration for the film ‘Hidden Figures,’ is dead at 101

Posted by in categories: computing, mathematics, space travel

NASA announced Johnson’s death on Monday.

Johnson was part of NASA’s “Computer Pool,” a group of mathematicians whose data powered NASA’s first successful space missions. The group’s success largely hinged on the accomplishments of its black women members.


Johnson was among a group of black women mathematicians who helped power NASA’s space travel in the early 1960s when the agency was still segregated.

Feb 26, 2020

Brain injury diagnosed with a finger prick and an optofluidic chip

Posted by in categories: computing, neuroscience

Researchers in the UK claim to have developed a microfluidic chip that can rapidly tell whether someone has suffered a traumatic brain injury from a finger-prick blood sample. The optofluidic device detects a biomarker linked to brain injury, based on the way that it scatters light (Nat. Biomed. Eng. 10.1038/s41551-019‑0510-4).


An optofluidic device uses Raman spectroscopy to detect a biomarker in blood associated with traumatic brain injury.

Feb 25, 2020

Physicists Foretell Quantum Computer With Single-Atom Transistor

Posted by in categories: computing, particle physics, quantum physics

Physicists at Purdue University and the University of New South Wales have built a transistor from a single atom of phosphorous precisely placed on a bed of silicon, taking another step towards the holy grail of tech research: the quantum computer.

Revealed on Sunday in the academic journal Nature Nanotechnology, the research is part of a decade-long effort at the University of New South Wales to deliver a quantum computer – a machine that would use the seemingly magical properties of very small particles to instantly perform calculations beyond the scope of today’s classical computers.

Continue reading “Physicists Foretell Quantum Computer With Single-Atom Transistor” »

Feb 25, 2020

Computer modeling brings simple, efficient rocket engine closer to reality

Posted by in categories: computing, mathematics, space travel

https://youtube.com/watch?v=zXSsd7uXjt8

Engineers at the University of Washington are working on a new type of rocket engine that holds the promise of being lighter, more efficient, and simpler to make than conventional liquid-fuel rockets. Called a Rotational Detonation Engine (RDE), one of the biggest hurdles to making it practical is to develop mathematical models that can describe how the very unpredictable engine design works in order to make it more stable.

An RDE is a rocket engine that is similar to the pulse jet engines that powered the infamous German V1 cruise missile of the Second World War, which used a simple combustion chamber with an exhaust pipe at one end and spring-mounted slats on the front face. In operation, air would come in through the slats, mix with fuel, which was then detonated, producing a pulse of thrust. An RDE takes this idea one step further.

Continue reading “Computer modeling brings simple, efficient rocket engine closer to reality” »