Menu

Blog

Archive for the ‘computing’ category: Page 307

Jan 13, 2022

Satellite Communication Networks

Posted by in categories: computing, satellites

My Chapter Titled ‘’, has been published in ‘Handbook of Real-Time Computing’ in Springer Nature. The chapter provides information on satellite communication networks for different orbits, use-cases, scenarios, link budget analyses, history, and future developments.


Software-defined radio (SDR) is one of many new technologies being adopted by satellite communication to lower the costs both operational and capital by reducing the amount of radio equipment involved in the communication chain and by giving the advantage of remote configuration and regular firmware updates. SDR basically replaces most of the radio equipment by a single computing device with software capable of performing functions of the replaced hardware equipment. SDRs are introduced not only in terrestrial gateways and ground stations, but next generations of LEO and GEO satellites are already adopting the technology. Previously, satellite radio links were limited to the configuration of radio equipment that was installed during the manufacturing of the satellite, which couldn’t be modified throughout the lifespan of the satellite.

Figure 15 displays a generic digital communication transmit and receive RF chain at the physical layer for binary, sampled, and analogue data streams. Data in binary that is collected from data source at transmit end is coming from the higher layers, which is then coded in binary, modulated to sampled, converted to analogue waveform through digital to analogue converter before sending it to the antenna end for transmission over-the-air interface with required transmit power. At the receive end, the wireless signal is received as analogue, converted to sampled for demodulation, decoded to binary, and sent to data sink for integrating with upper layers. The coding/decoding and modulation/demodulation, commonly referred to as MOD/COD, are programmable functions and can be replaced by SDR using a processing device. This can be done at the ground stations, at the gateway, user terminals, and at the satellite using on-board processing.

Jan 13, 2022

Chipmakers are set to be ‘winners’ as the metaverse takes off

Posted by in categories: computing, internet

The metaverse, which requires a massive amount of computing power, is set to benefit global chipmakers— but other tech-related industries could also gain from it, analysts say.

Widely seen as the next generation of the internet, the metaverse refers broadly to a virtual world where humans interact through three-dimensional avatars that can be controlled via virtual reality headsets like Oculus.

Through the metaverse, users can engage in virtual activities such as gaming, virtual concerts or live sports.

Jan 13, 2022

A treasure map for the realm of electrocatalysts

Posted by in categories: computing, materials

Efficient electrocatalysts, which are needed for the production of green hydrogen, for example, are hidden in materials composed of five or more elements. A team from Ruhr-Universität Bochum (RUB) and the University of Copenhagen has developed an efficient method for identifying promising candidates in the myriad of possible materials. To this end, the researchers combined experiments and simulation.

They published their report in the journal Advanced Energy Materials (“Unravelling Composition–Activity–Stability Trends in High Entropy Alloy Electrocatalysts by Using a Data-Guided Combinatorial Synthesis Strategy and Computational Modeling”).

A view of the sputtering machine used to produce the material library counters. (Image: Christian Nielinger)

Jan 13, 2022

TSMC invests in new capacity despite forecasts chip demand will ease

Posted by in categories: business, computing

Last year, Germany spent $53 billion on defense. This year, TSMC is spending $44 billion on chip factories. (In 2019, TSMC only spent $14.9 billion, so they are spending insane amounts of money trying to fix the chip shortage.) Pretty much everyone in the chip business is also dramatically increasing their spending as well.


TSMC investment will “put a ceiling” on Samsung, Intel’s foundry plans.

Jan 13, 2022

A massive asteroid will zip past Earth next week. Here’s how to spot it

Posted by in categories: computing, space

An enormous asteroid more massive than two Empire State Buildings is heading our way, but unlike the so-called planet-killer comet in the recent movie “Don’t Look Up,” this space rock will zoom harmlessly past Earth.

The stony asteroid, known as (7482) 1994 PC1, will pass at its closest on Jan. 18 at 4:51 p.m. EST (2151 GMT), traveling at 43,754 mph (70,415 km/h) and hurtling past Earth at a distance of 0.01324 astronomical units — 1.2 million miles (nearly 2 million kilometers), according to NASA JPL-Caltech’s Solar System Dynamics (SSD).

Jan 12, 2022

Facebook’s hyperscale data center warms Odense

Posted by in categories: climatology, computing, sustainability

Similar projects in Denmark have used recaptured heat from smaller structures, such as supermarkets, to supply a nearby building or two. The Facebook project scales the technology to a level not yet reached in the world by producing up to 25 MW per hour of usable heat.

“Facebook opened their new data center in Odense,” said Denmark’s Minister of Climate, Energy, and Utilities, Dan Jørgensen, on Instagram. “It’s based on renewable energy only (from their own wind farm) and feeds their surplus heat into the district heating system. Good news for the transition to green energy!”

As a nation, Denmark has set a goal to eliminate the use of coal by 2030. The heat recovery project supports Odense’s even more aggressive goal to phase out coal (which 30 percent of the city still depends on for heat) by 2023 — a modern feat for a city that just celebrated its 1,031st anniversary. Facebook’s data center is estimated to reduce Odense’s demand for coal by up to 25 percent.

Jan 11, 2022

Quantum computing companies to see real-world use cases in 2022

Posted by in categories: computing, quantum physics

Quantum computing is finally making its presence felt among companies around the world. Over the last few years, companies have shown interest in quantum computing but often couldn’t make definitive decisions on using the technology, as there was not enough research on its practical applications beyond the theoretical.

Nevertheless, 2021 has been a remarkable year for the quantum computing industry. Not only has there been more research on the potential use cases for the technology, but investments in quantum computing have shot up globally to boot.

While the US and China continue to compete with each other for supremacy in this evolving branch of computing, other countries and organizations around the world have slowly been playing catch up as well. And now, 2022 is expected to be the year whereby companies can start seeing quantum computing breakthroughs that could result in practical uses.

Jan 11, 2022

“Extreme low power” chip with energy harvesting provides lifetime battery solution for remote controls

Posted by in categories: computing, sustainability

UEI “Extreme Low-Power” chip for Bluetooth, voice remote controls with energy-harvesting in order to provide lifetime battery life.


Most people probably don’t mind changing batteries in remote controls every so often, but it contributes to e-waste especially if you’re not using rechargeable batteries, and I always find it’s pain as I don’t usually have stock, or don’t feel like waiting for several hours to recharge the batteries.

Universal Electronics Inc, or UEI for shorts, claims to have a solution with a family of QuickSet-certified chips using “Extreme Low-Power”, energy-harvesting and “high-performance technology” that would provide lifetime battery life to Bluetooth, voice remote controls. The main goal is “to help transition the world towards a more sustainable future, by reducing primary battery waste throughout the life of the product, which in turn reduces the cumulative CO2 footprint”.

Continue reading “‘Extreme low power’ chip with energy harvesting provides lifetime battery solution for remote controls” »

Jan 11, 2022

Researcher develops new tool for understanding hard computational problems that appear intractable

Posted by in categories: computing, information science, mathematics

The notion that some computational problems in math and computer science can be hard should come as no surprise. There is, in fact, an entire class of problems deemed impossible to solve algorithmically. Just below this class lie slightly “easier” problems that are less well-understood—and may be impossible, too.

David Gamarnik, professor of operations research at the MIT Sloan School of Management and the Institute for Data, Systems, and Society, is focusing his attention on the latter, less-studied category of problems, which are more relevant to the everyday world because they involve —an integral feature of natural systems. He and his colleagues have developed a potent tool for analyzing these problems called the overlap gap property (or OGP). Gamarnik described the new methodology in a recent paper in the Proceedings of the National Academy of Sciences.

Jan 11, 2022

Raspberry Pi system can detect viruses on other devices without use of software

Posted by in categories: biotech/medical, computing, mobile phones, security

A team of researchers at the Institute of Computer Science and Random Systems has built a non-software-based virus detection system using a Raspberry Pi, an H-field probe and an oscilloscope to detect electromagnetic wave signatures of multiple types of viruses. The team presented its system and test results at last month’s ACM Machinery’s Annual Computer Security Applications Conference and published a paper describing their system on ACM’s Research Article page.

The idea behind the new system is that running software generates electromagnetic waves. And each piece of software generates its own unique wave patterns due to the way the software executes its code. The researchers took advantage of this knowledge and began using an H-field probe to capture wave patterns of known computer viruses running on various devices and viewed the results on an oscilloscope. They saw oscilloscope patterns that were unique to individual viruses as they were running. The researchers used that information to program a Raspberry Pi to identify data from the other two devices to recognize known virus wave patterns, using the system as a virus detector. To determine if a virus is running on a computer, IoT device or smartphone, a user places the H-field probe close enough to the device to read the electromagnetic waves that are generated. The Raspberry Pi then reports on whether it found any viruses, and if so, which ones.