Toggle light / dark theme

Research reveals quantum topological potential in material

New research into topological phases of matter may spur advances in innovative quantum devices. As described in a new paper published in the journal Nature Communications, a research team including Los Alamos National Laboratory scientists used a novel strain engineering approach to convert the material hafnium pentatelluride (HfTe5) to a strong topological insulator phase, increasing its bulk electrical resistance while lowering it at the surface, a key to unlocking its quantum potential.

“I’m excited that our team was able to show that the elusive and much-sought-after topological surface states can be made to become a predominant electrical conduction pathway,” said Michael Pettes, scientist with the Center for Integrated Nanotechnologies (CINT) at the Laboratory.

“This is promising for the development of types of quantum optoelectronic devices, dark matter detectors and topologically protected devices such as quantum computers. And the methodology we demonstrate is compatible for experimentation on other .”

New method decodes the hidden origins of magnetism

We know magnetism as a fundamental force of nature that plays a crucial role in both the natural world and modern technology. It governs the behavior of materials at the atomic level and is essential for the functioning of countless devices in our everyday life, including data storage, sensing, wireless charging, sound recording and playing systems, and more.

New memristor-based system could boost processing of radiofrequency signals

The development of more advanced technologies to process radiofrequency signals could further advance wireless communication, allowing devices connected to the internet to share information with each other faster and while consuming less energy. Currently, radio frequency signals are processed using software-defined radios (SDRs), systems that can modulate, filter and analyze signals using software rather than hardware components.

Despite their widespread use, these systems rely on purely digital hardware in which computing and memory modules are physically separated, leading to constant data shuttling between the two and hence extra energy consumption. Furthermore, the extensive use of circuit components known as analog-to-digital converters (ADCs), which convert incoming radiofrequency signals into digital values that can then be processed by digital computers, often results in processing delays (i.e., latency) and substantial energy consumption. Electronics engineers have thus been trying to develop alternative systems that can directly manipulate signals in their original (i.e., analog) form, which would reduce the movement of data and lower energy consumption.

Researchers at the University of Massachusetts Amherst, Texas A&M University and TetraMem Inc. recently introduced a promising new system for processing analog radiofrequency systems, which is based on non-volatile memory devices known as memristors integrated on a chip. Their proposed system, presented in a paper in Nature Electronics, was found to process radiofrequency signals significantly faster and more energy-efficiently than existing SDRs.

Theory-guided strategy expands the scope of measurable quantum interactions

A new theory-guided framework could help scientists probe the properties of new semiconductors for next-generation microelectronic devices, or discover materials that boost the performance of quantum computers.

Research to develop new or better materials typically involves investigating properties that can be reliably measured with existing , but this represents just a fraction of the properties that scientists could potentially probe in principle. Some properties remain effectively “invisible” because they are too difficult to capture directly with existing methods.

Take electron–phonon interaction—this property plays a critical role in a material’s electrical, thermal, optical, and superconducting properties, but directly capturing it using existing techniques is notoriously challenging.

Scientists Use Cryptography To Unlock Secrets of Quantum Advantage

Researchers use cryptography to gain insights into the mechanisms behind quantum speed-ups. Quantum computing is widely regarded by experts as the next major leap in computer technology. Unlike traditional computers, which process information in binary (0s and 1s), quantum computers make use of u

Metasurfaces could be the next quantum information processors

In the race toward practical quantum computers and networks, photons—fundamental particles of light—hold intriguing possibilities as fast carriers of information at room temperature.

Photons are typically controlled and coaxed into quantum states via waveguides on extended microchips, or through bulky devices built from lenses, mirrors, and beam splitters. The photons become entangled—enabling them to encode and process quantum information in parallel—through complex networks of these . But such systems are notoriously difficult to scale up due to the large numbers and imperfections of parts required to do any meaningful computation or networking.

Could all those optical components be collapsed into a single, flat, ultra-thin array of subwavelength elements that control light in the exact same way, but with far fewer fabricated parts?

Scientists find Uranus is surprisingly warm, heating up the case for a new planetary mission

Scientists have found that Uranus is emitting its own internal heat — even more than it receives from sunlight — and this discovery contradicts observations of the distant gas giant made by NASA’s Voyager 2 probe nearly four decades ago.

Scientists led by Xinyue Yang of the University of Houston analyzed decades of readings from spacecraft and computer models to find that Uranus emits 12.5% more internal heat than the amount of heat it receives from the sun. However, that amount is still far less than the internal heat of other outer solar system planets like Jupiter, Saturn and Neptune, which emit 100% more heat than they get from the sun.

CU Denver Develops Quantum Tool that May Lead to Gamma-Ray Lasers and Access the Multiverse

Sahai has found a way to create extreme electromagnetic fields never before possible in a laboratory. These electromagnetic fields—created when electrons in materials vibrate and bounce at incredibly high speeds—power everything from computer chips to super particle colliders that search for evidence of dark matter. Until now, creating fields strong enough for advanced experiments has required huge, expensive facilities.

For example, scientists chasing evidence of dark matter use machines like the Large Hadron Collider at CERN, the European Organization for Nuclear Research, in Switzerland. To accommodate the radiofrequency cavities and superconducting magnets needed for accelerating high energy beams, the collider is 16.7 miles long. Running experiments at that scale demands huge resources, is incredibly expensive, and can be highly volatile.

Sahai developed a silicon-based, chip-like material that can withstand high-energy particle beams, manage the energy flow, and allow scientists to access electromagnetic fields created by the oscillations, or vibrations, of the quantum electron gas—all in a space about the size of your thumb.

The rapid movement creates the electromagnetic fields. With Sahai’s technique, the material manages the heat flow generated by the oscillation and keeps the sample intact and stable. This gives scientists a way to see activity like never before and opens the possibility of shrinking miles-long colliders into a chip.


A University of Colorado Denver engineer is on the cusp of giving scientists a new tool that can help them turn sci-fi into reality.

Imagine a safe gamma ray laser that could eradicate cancer cells without damaging healthy tissue. Or a tool that could help determine if Stephen Hawking’s multiverse theory is real by revealing the fabric underlying the universe.

/* */