Menu

Blog

Archive for the ‘computing’ category: Page 276

Apr 24, 2022

Elon Musk said his Neuralink brain chip could help treat morbid obesity. Scientists say it’s a long shot — but not an impossibility

Posted by in categories: biotech/medical, computing, Elon Musk, neuroscience

Elon Musk believes his Neuralink brain chip could help treat morbid obesity. Experts say the billionaire’s dream isn’t as far-fetched as it may seem.

“I don’t think it is any more implausible than other claims for the potential of neurotechnology,” Professor Andrew Jackson, an expert in neural interfaces at Newcastle University, told Insider.

Continue reading “Elon Musk said his Neuralink brain chip could help treat morbid obesity. Scientists say it’s a long shot — but not an impossibility” »

Apr 22, 2022

An ocean in your brain: Interacting brain waves key to how we process information

Posted by in categories: biological, computing, neuroscience

For years, the brain has been thought of as a biological computer that processes information through traditional circuits, whereby data zips straight from one cell to another. While that model is still accurate, a new study led by Salk Professor Thomas Albright and Staff Scientist Sergei Gepshtein shows that there’s also a second, very different way that the brain parses information: through the interactions of waves of neural activity. The findings, published in Science Advances on April 22, 2022, help researchers better understand how the brain processes information.

“We now have a new understanding of how the computational machinery of the brain is working,” says Albright, the Conrad T. Prebys Chair in Vision Research and director of Salk’s Vision Center Laboratory. “The model helps explain how the brain’s underlying state can change, affecting people’s attention, focus, or ability to process information.”

Researchers have long known that waves of electrical activity exist in the brain, both during sleep and wakefulness. But the underlying theories as to how the brain processes information—particularly , like the sight of a light or the sound of a bell—have revolved around information being detected by specialized and then shuttled from one neuron to the next like a relay.

Apr 22, 2022

Scientists turn a hydrogen molecule into a quantum sensor

Posted by in categories: chemistry, computing, particle physics, quantum physics

Physicists at the University of California, Irvine have demonstrated the use of a hydrogen molecule as a quantum sensor in a terahertz laser-equipped scanning tunneling microscope, a technique that can measure the chemical properties of materials at unprecedented time and spatial resolutions.

This new technique can also be applied to analysis of two-dimensional materials which have the potential to play a role in advanced energy systems, electronics and quantum computers.

Today in Science, the researchers in UCI’s Department of Physics & Astronomy and Department of Chemistry describe how they positioned two bound atoms of hydrogen in between the silver tip of the STM and a sample composed of a flat copper surface arrayed with small islands of copper nitride. With pulses of the laser lasting trillionths of a second, the scientists were able to excite the hydrogen molecule and detect changes in its quantum states at and in the ultrahigh vacuum environment of the instrument, rendering atomic-scale, time-lapsed images of the sample.

Apr 22, 2022

Interacting Brain Waves Key to How We Process Information

Posted by in categories: biological, computing, neuroscience

Summary: Study reveals the different ways the brain parses information through interactions of waves of neural activity.

Source: Salk Institute.

For years, the brain has been thought of as a biological computer that processes information through traditional circuits, whereby data zips straight from one cell to another. While that model is still accurate, a new study led by Salk Professor Thomas Albright and Staff Scientist Sergei Gepshtein shows that there’s also a second, very different way that the brain parses information: through the interactions of waves of neural activity.

Apr 22, 2022

Mass of rare particle may conflict with ‘standard model,’ signaling new physics

Posted by in categories: computing, particle physics

New measurement for W boson is at odds with previous values.


AMD has cut prices on its Ryzen 5,000 CPUs. In some cases, they’ve trimmed price by as much as 25 percent.

Apr 22, 2022

Parallel quantum simulation of large systems on small NISQ computers

Posted by in categories: computing, internet, quantum physics

Basically all this says is that a basic quantum computer made of a simulation of an infinite quantum computer. So essentially infinite quantum computers could make the internet much more instant.


To parallelise our simulation on a small NISQ machine, we first identify partitions of the system where the effect of one partition upon the other can be summarised by a small amount of information. This is achieved by making Schmidt decompositions across the cut: \(\left|\psi \right\rangle =\mathopsum
olimits_alpha = 1Dlambda ^alpha \left|phi _L^alpha \right\rangle \left|phi _R^alpha \right\rangle,\) where \(\left|phi _L^alpha \right\rangle\) are an orthonormal set of states to the left of the cut and \(\left|phi _R^alpha \right\rangle\) the same on the right. The λα are known as the Schmidt coefficients and D the Schmidt rank or bond order. Retaining λα only above some threshold value provides a way to compress representations of a quantum state; the MPS construction can be obtained by applying this procedure sequentially along a spin chain4.

If an observation is made on the right-hand-side of such a cut, the effect of the quantum state on the left upon the observation can be summarised by just D variables corresponding to the Schmidt coefficients. This same effect can be achieved by an effective state on a spin chain of length \(log\,_2D\) —see Fig. 1 —which can be parametrised on the quantum circuit by an SU (D2) unitary VL. This encodes both the Schmidt coefficients λα and the orthonormal states \(\left|phi _L^alpha \right\rangle\). The latter does not contribute to observables on the right and so in principle, VL can be parametrised by just D variational parameters. The precise numerical values must be determined by solving a quantum mechanical problem on the left of the system. Similarly, for observations made to the left of the cut, the effect of the right-hand side can be summarised by a unitary VR.

Apr 22, 2022

Next generation photonic memory devices are ‘light-written,’ ultrafast and energy efficient

Posted by in categories: computing, space

Circa 2019


Light is the most energy-efficient way of moving information. Yet, light shows one big limitation: it is difficult to store. As a matter of fact, data centers rely primarily on magnetic hard drives. However, in these hard drives, information is transferred at an energy cost that is nowadays exploding. Researchers of the Institute of Photonic Integration of the Eindhoven University of Technology (TU/e) have developed a ‘hybrid technology’ which shows the advantages of both light and magnetic hard drives.

Ultra-short (femtosecond) allows data to be directly written in a magnetic memory in a fast and highly energy-efficient way. Moreover, as soon as the information is written (and stored), it moves forward leaving space to empty memory domains to be filled in with new data. This research, published in Nature Communications, promises to revolutionize the process of data storage in future photonic integrated circuits.

Continue reading “Next generation photonic memory devices are ‘light-written,’ ultrafast and energy efficient” »

Apr 22, 2022

Experimental characterisation of nonlocal photon superfluids

Posted by in categories: computing, particle physics, quantum physics

Circa 2015 This is basically amazing leading to speeds in a computer basically infinite.


Quantum gases of atoms and exciton-polaritons are nowadays a well established theoretical and experimental tool for fundamental studies of quantum many-body physics and suggest promising applications to quantum computing. Given their technological complexity, it is of paramount interest to devise other systems where such quantum many-body physics can be investigated at a lesser technological expense. Here we examine a relatively well-known system of laser light propagating through thermo-optical defocusing media: based on a hydrodynamical description of light as a quantum fluid of interacting photons, we investigate such systems as a valid, room temperature alternative to atomic or exciton-polariton condensates for studies of many-body physics.

Apr 22, 2022

Fabricating qubits using advanced semiconductor manufacturing processes

Posted by in categories: computing, quantum physics

Quantum computers are promising computing machines that perform computations leveraging the collective properties of quantum physics states. These computers could help to tackle many computational problems that are currently intractable with conventional computers.

Despite their promise, fabricating quantum computers on a large-scale is currently very challenging, as a full-scale quantum computer integrates millions of qubits. To ensure that they can be produced using industrial semiconductor manufacturing processes, quantum device engineers have been trying to create quantum computers based on silicon quantum dots.

Nonetheless, existing quantum computers have been primarily fabricated using and conventional lift-off processes. This greatly limits their production rates, as both these processes only yield a few properly functioning devices at a time.

Apr 21, 2022

Quantum Steampunk: A new frontier in quantum physics

Posted by in categories: computing, quantum physics

A blend of Victorian thermodynamics and futuristic quantum computing come together in one author’s new vision.