Toggle light / dark theme

Optimal scaling for magic state distillation in quantum computing achieved

Researchers have demonstrated that the theoretically optimal scaling for magic state distillation—a critical bottleneck in fault-tolerant quantum computing—is achievable for qubits, improving on the previous best result by reaching a scaling exponent of exactly zero.

The work, published in Nature Physics, resolves a fundamental open problem that has persisted in the field for years.

“Broadly, I think that building quantum computers is a wonderful and inspiring goal,” Adam Wills, a Ph.D. student at MIT’s Center for Theoretical Physics and lead author of the study, told Phys.org.

United States sets a world record and pulls off a quantum computing feat with one‑millisecond coherence for a qubit

Engineers have coaxed them into lasting longer, using a smarter materials stack and some painstaking fabrication.

Researchers in the United States say a superconducting qubit now holds its state for more than a millisecond, long enough to change how we think about useful quantum circuits. The result pushes lab records and nudges industrial roadmaps toward designs that look manufacturable rather than bespoke.

Building quantum computers with advanced semiconductor fab

IBM Quantum Nighthawk is IBM’s most advanced quantum processor to date, engineered specifically to achieve “quantum advantage” by the end of 2026—when a quantum computer can solve a practical problem better than any classical-only method. Key capabilities.


An inside look at how IBM® is using state-of-the-art 300mm semiconductor fabrication technology to build the future of quantum hardware.

New enzyme network with competing peptides can make decisions based on external environment

The ability to respond to changing surroundings was once considered exclusive to complex living organisms. Then came computers, specially designed for stimulus–response tasks, which can take in signals from their environment and choose what to do next based on the instructions already written into them.

Scientists have long wanted to replicate this kind of behavior in . Life and computers both need many parts working in sync to make decisions, so expecting a handful of chemicals in a to do the same seemed quite far-fetched.

Not anymore. A team of researchers from the Netherlands and Australia has developed a novel chemical network where different peptides compete for enzymes—specifically proteases arranged in a network. This competition causes the to reorganize itself, forming an enzymatic network that adapts to the external environment.

On-chip cryptographic protocol lets quantum computers self-verify results amid hardware noise

Quantum computers, machines that process information leveraging quantum mechanical effects, could outperform classical computers on some optimization tasks and computations. Despite their potential, quantum computers are known to be prone to errors and their ability to perform computations is easily influenced by noise.

Quantum scientists and engineers have thus been developing verification protocols, tools designed to check whether quantum computers are computing information correctly. Ideally, these protocols should also provide , meaning that they should ensure that the information processed by computers cannot be forged or tampered with by malicious users.

Researchers at Sorbonne University, University of Edinburgh and Quantinuum recently introduced a new on-chip cryptographically secure verification protocol for quantum computers. The new protocol, outlined in a paper published in Physical Review Letters, was successfully deployed on Quantinuum’s H1-1 quantum processor.

Once considered quality problems, substrate defects now enable precise control of semiconductor crystal growth

A team led by researchers at Rensselaer Polytechnic Institute (RPI) has made a breakthrough in semiconductor development that could reshape the way we produce computer chips, optoelectronics and quantum computing devices.

The team, which also includes researchers from the National High Magnetic Field Laboratory, Florida State University and SUNY Buffalo, published their findings last month in Nature. Their work deepens the understanding of remote epitaxy, a manufacturing technique that entails growing high-quality semiconducting films on one substrate and then transferring them to a different one.

Remote epitaxy works by placing a thin buffer layer between a substrate and a growing crystal film. The substrate’s atomic structure guides the crystal’s growth through the buffer, but the buffer prevents permanent bonding—meaning that the finished crystal layer can be peeled off and moved elsewhere.

APLab: On average a human being is capable of reading between 200 and 300 words per minute (wpm), while speed readers can achieve speeds of 400–700 WPM or higher

This pales into comparison to ChatGPT which can effectively read and analyze tens of thousands of words per second, since I process text computationally rather than linearly.

What if there was an invention or the concept of an invention that could be created to enhance a human beings capacity to read just as quickly as ChatGPT’s? I tasked ChatGPT with a step-by-step process to create that invention:

Here’s a concrete, neuroscience-grounded invention plan to push human reading toward “machine-speed”—while keeping comprehension and recall intact.

## 0) Core idea (one sentence)

Exploit the brain’s natural reading pipeline—VWFA → Wernicke (lexico-semantic) ↔ Broca (phonological sequencing) with eye-movement–driven coarse-to-fine vision—by timing text delivery to your saccade/ fixation cycle, suppressing unnecessary subvocalization, and entraining semantic parsing rhythms. ([PMC][1])

## 1) Hardware & sensing.

‘Impossible’ merger of two massive black holes explained

In 2023, astronomers detected a huge collision. Two unprecedentedly massive black holes had crashed an estimated 7 billion light-years away. The enormous masses and extreme spins of the black holes puzzled astronomers. Black holes like these were not supposed to exist.

Now, astronomers with the Flatiron Institute’s Center for Computational Astrophysics (CCA) and their colleagues have figured out just how these black holes may have formed and collided. The astronomers’ comprehensive simulations—which follow the system from the lives of the parent stars through to their ultimate death—uncovered the missing piece that previous studies had overlooked: magnetic fields.

“No one has considered these systems the way we did; previously, astronomers just took a shortcut and neglected the magnetic fields,” says Ore Gottlieb, astrophysicist at the CCA and lead author of the new study on the work published in The Astrophysical Journal Letters. “But once you consider magnetic fields, you can actually explain the origins of this unique event.”

/* */