Menu

Blog

Archive for the ‘computing’ category: Page 10

Dec 17, 2023

Lab Grown Brain Connected to a Microchip Recognized Human Voices

Posted by in categories: computing, neuroscience

Get a Wonderful Person Tee: https://teespring.com/stores/whatdamathMore cool designs are on Amazon: https://amzn.to/3QFIrFXAlternatively, PayPal donations ca…

Dec 16, 2023

Intel, Samsung, and TSMC Demo 3D-Stacked Transistors

Posted by in categories: computing, futurism

Although the complementary FET is still as much as a decade away from commercialization, it’s clearly the future of CMOS.


The Big Three can now all make CFETs—next stop on the Moore’s Law roadmap.

Dec 16, 2023

Quantum Breakthrough: Caltech Scientists Unveil New Way To Erase Quantum Computer Errors

Posted by in categories: computing, quantum physics, sustainability

Future quantum computers are expected to revolutionize problem-solving in various fields, such as creating sustainable materials, developing new medications, and unraveling complex issues in fundamental physics. However, these pioneering quantum systems are currently more error-prone than the classical computers we use today. Wouldn’t it be nice if researchers could just take out a special quantum eraser and get rid of the mistakes?

Reporting in the journal Nature, a group of researchers led by Caltech is among the first to demonstrate a type of quantum eraser. The physicists show that they can pinpoint and correct for mistakes in quantum computing systems known as “erasure” errors.

“It’s normally very hard to detect errors in quantum computers, because just the act of looking for errors causes more to occur,” says Adam Shaw, co-lead author of the new study and a graduate student in the laboratory of Manuel Endres, a professor of physics at Caltech. “But we show that with some careful control, we can precisely locate and erase certain errors without consequence, which is where the name erasure comes from.”

Dec 16, 2023

Hong Kong develops world’s first antenna for ultra-secure 6G

Posted by in categories: computing, internet, physics

Researchers call it the ‘Holy Grail’ for physicists and engineers.


A group of researchers, led by Professor Chan Chi-hou from the City University of Hong Kong, created a special antenna that can control all five important aspects of electromagnetic waves using computer software.

The antenna, which they have named ’microwave universal metasurface antenna,’ is capable of dynamically, simultaneously, independently, and precisely manipulating all the essential properties of electromagnetic waves through software control.

Continue reading “Hong Kong develops world’s first antenna for ultra-secure 6G” »

Dec 15, 2023

Computational model captures the elusive transition states of chemical reactions

Posted by in categories: chemistry, computing

During a chemical reaction, molecules gain energy until they reach what’s known as the transition state — a point of no return from which the reaction must proceed.


MIT chemists have developed a computational model that can rapidly predict the structure of the transition state of a reaction (left structure), if it is given the structure of a reactant (middle) and product (right).

Dec 15, 2023

New way to charge batteries harnesses the power of ‘indefinite causal order’

Posted by in categories: chemistry, computing, engineering, quantum physics, sustainability

Batteries that exploit quantum phenomena to gain, distribute and store power promise to surpass the abilities and usefulness of conventional chemical batteries in certain low-power applications. For the first time, researchers, including those from the University of Tokyo, take advantage of an unintuitive quantum process that disregards the conventional notion of causality to improve the performance of so-called quantum batteries, bringing this future technology a little closer to reality.

When you hear the word “quantum,” the physics governing the subatomic world, developments in quantum computers tend to steal the headlines, but there are other upcoming quantum technologies worth paying attention to. One such item is the which, though initially puzzling in name, holds unexplored potential for sustainable energy solutions and possible integration into future electric vehicles. Nevertheless, these new devices are poised to find use in various portable and low-power applications, especially when opportunities to recharge are scarce.

At present, quantum batteries only exist as laboratory experiments, and researchers around the world are working on the different aspects that are hoped to one day combine into a fully functioning and practical application. Graduate student Yuanbo Chen and Associate Professor Yoshihiko Hasegawa from the Department of Information and Communication Engineering at the University of Tokyo are investigating the best way to charge a quantum battery, and this is where time comes into play. One of the advantages of quantum batteries is that they should be incredibly efficient, but that hinges on the way they are charged.

Dec 14, 2023

Human Brain Cells on a Chip Can Recognize Speech And Do Simple Math

Posted by in categories: computing, mathematics, neuroscience

There is no computer even remotely as powerful and complex as the human brain. The lumps of tissue ensconced in our skulls can process information at quantities and speeds that computing technology can barely touch.

Key to the brain’s success is the neuron’s efficiency in serving as both a processor and memory device, in contrast to the physically separated units in most modern computing devices.

There have been many attempts to make computing more brain-like, but a new effort takes it all a step further – by integrating real, actual, human brain tissue with electronics.

Dec 14, 2023

A promising pairing: Scientists demonstrate new combination of materials for quantum science

Posted by in categories: computing, quantum physics, science

Quantum information scientists are always on the hunt for winning combinations of materials, materials that can be manipulated at the molecular level to reliably store and transmit information. Following a recent proof-of-principle demonstration, researchers are adding a new combination of compounds to the quantum materials roster.

In a study reported in ACS Photonics, researchers combined two nanosized structures—one made of diamond and one of lithium niobate—onto a single chip. They then sent light from the diamond to the lithium niobate and measured the fraction of light that successfully made it across.

The greater that fraction, the more efficient the coupling of the materials, and the more promising the pairing as a component in .

Dec 14, 2023

Embedding nanodiamonds in polymer can advance quantum computing and biological studies

Posted by in categories: biological, computing, nanotechnology, particle physics, quantum physics

A nitrogen-vacancy (NV) center is a defect in the crystal structure of diamond, where a nitrogen atom replaces a carbon atom in the diamond lattice and a neighboring site in the lattice is vacant. This and other fluorescent defects in diamond, known as color centers, have attracted researchers’ attention owing to their quantum properties, such as single-photon emission at room temperature and with long coherence time. Their many applications include quantum information encoding and processing, and cell marking in biological studies.

Microfabrication in diamond is technically difficult, and nanodiamonds with color centers have been embedded in custom-designed structures as a way of integrating these quantum emitters into photonic devices. A study conducted at the University of São Paulo’s São Carlos Institute of Physics (IFSC-USP) in Brazil has established a method for this, as described in an article published in the journal Nanomaterials.

“We demonstrated a method of embedding fluorescent nanodiamonds in designed for this purpose, using two-photon polymerization [2PP],” Cleber Mendonça, a professor at IFSC-USP and last author of the article, told Agência FAPESP. “We studied the ideal concentration of nanodiamond in the photoresist to achieve structures with at least one fluorescent NV center and good structural and optical quality.” The photoresist is a light-sensitive material used in the fabrication process to transfer nanoscale patterns to the substrate.

Dec 14, 2023

55 years ago, the ‘Mother of All Demos’ foresaw modern computing

Posted by in categories: computing, engineering, food, sustainability

Engelbart grew up on a small farm in Southeast Portland where his father operated a radio store.

He graduated from Franklin High School in 1942 and enrolled at Oregon State College, now called Oregon State University, to study electrical engineering.

When World War II interrupted his studies, he spent two years working as a Navy radio and radar technician in the Philippines.

Page 10 of 722First7891011121314Last