Toggle light / dark theme

Crystal-modifying agent piracetam provides scalable strategy for high-efficiency all-perovskite tandem solar cells

All-perovskite tandem solar cells (TSCs) are a class of solar cells comprised of two or more sub-cells that absorb light with different wavelengths, all of which are made of perovskites (i.e., materials with a characteristic crystal structure known to efficiently absorb light). These solar cells have been found to be highly promising energy solutions, as they could convert sunlight into electricity more efficiently than existing silicon-based solar cells.

Despite their potential, most all-perovskite TSCs developed to date only perform well when they are small and their performance rapidly declines as their size increases. This has ultimately prevented them from being manufactured and deployed on a large-scale.

Researchers at Wuhan University and other institutes in China recently introduced a new strategy for enhancing the performance of all-perovskite TSCs irrespective of their size, which could in turn contribute to their future commercialization. Their proposed approach for fabricating these cells, outlined in a paper published in Nature Nanotechnology, entails the use of piracetam, a chemical additive that can help to control the initial phase of crystal formation (i.e., nucleation) in wide-bandgap perovskites.

Mapping tumor microenvironments to predict lung cancer immunotherapy response

Amidst the continued struggle to treat non-small-cell lung cancer, a new study led by Stanford University scientists suggests that a patient’s response to immunotherapy may hinge on how immune cells cluster around tumors. Their results reveal that spatial arrangements of certain immune cells within tumors can serve as powerful predictors of treatment response, surpassing existing biomarker tests.

Lung cancer leads global cancer mortality, and non-small-cell variants make up more than 80% of cases. Immune checkpoint inhibitors have transformed therapy yet help only 27–45% of recipients.

Reliable predictive biomarkers for immunotherapy response have eluded clinicians, who currently rely on PD-L1 immunohistochemistry, tumor mutational burden, and microsatellite stability tests, each offering modest predictive performance across trials and are prone to inconsistency.

Understanding one gene’s role in different neurodevelopmental disorders

Researchers have identified how variations in a gene called TRIO can influence brain functions and result in distinct neurodevelopmental diseases. The study, published in the journal eLife, could pave the way for future therapeutic developments.

TRIO encodes a diverse group of proteins that control the function and structure of the cytoskeleton—a cell’s internal scaffolding. Rare damaging variants in this gene have been identified in individuals with , , schizophrenia, and related disorders. However, the mechanisms underlying the associations aren’t yet understood.

“It’s really extraordinary that different variants in this can have such dramatically different effects on and function,” says Anthony Koleske, Ph.D., Ensign Professor of Molecular Biophysics and Biochemistry at Yale School of Medicine (YSM) and the study’s senior author.

A new molecular model of bilayer graphene with higher semiconducting properties

Juan Casado Cordón, Professor of Physical Chemistry at the University of Malaga, considers graphene—an infinite layer of carbon atoms—as one of the greatest discoveries of the last 20 years due to its “unique properties” such as high electrical and thermal conductivity or its great flexibility and, also, resistance. Qualities that become exceptional, he explains, with a recently found evolution consisting in joining two layers of this material—bilayer graphene.

Researchers from the University of Malaga, led by Casado Cordón, and from the Complutense University, under the coordination of Professor Nazario Martín, have taken a step further and created an unprecedented molecular model of that is capable of controlling rotation, which in turn allows controlling conductivity and achieving “potentially spectacular semiconducting properties.”

The result is a new model molecule of bilayer graphene. “By designing covalently bound molecular nanographenes we can simulate the search for the magic angle between graphene-like sheets, which is where semiconductivity is achieved, a key property in, for example, the construction of transistors, the basic units of computers,” explains this scientist from the Faculty of Science. This finding has been published in Nature Chemistry.

Surprise Link Between Menthol And Alzheimer’s Found in Mice

In recent years, scientists discovered something strange: When mice with Alzheimer’s disease inhale menthol, their cognitive abilities improve.

It seems the chemical compound can stop some of the damage done to the brain that’s usually associated with the disease.

In particular, researchers noticed a reduction in the interleukin-1-beta (IL-1β) protein, which helps to regulate the body’s inflammatory response – a response that can offer natural protection but one that leads to harm when it’s not controlled properly.

Monte Carlo method

Monte Carlo methods, or Monte Carlo experiments, are a broad class of computational algorithms that rely on repeated random sampling to obtain numerical results. The underlying concept is to use randomness to solve problems that might be deterministic in principle. The name comes from the Monte Carlo Casino in Monaco, where the primary developer of the method, mathematician Stanisław Ulam, was inspired by his uncle’s gambling habits.

Monte Carlo methods are mainly used in three distinct problem classes: optimization, numerical integration, and generating draws from a probability distribution. They can also be used to model phenomena with significant uncertainty in inputs, such as calculating the risk of a nuclear power plant failure. Monte Carlo methods are often implemented using computer simulations, and they can provide approximate solutions to problems that are otherwise intractable or too complex to analyze mathematically.

Monte Carlo methods are widely used in various fields of science, engineering, and mathematics, such as physics, chemistry, biology, statistics, artificial intelligence, finance, and cryptography. They have also been applied to social sciences, such as sociology, psychology, and political science. Monte Carlo methods have been recognized as one of the most important and influential ideas of the 20th century, and they have enabled many scientific and technological breakthroughs.

Assembly instructions for enzymes: Universal rules can help to design an optimal enzyme from scratch

In biology, enzymes have evolved over millions of years to drive chemical reactions. Scientists from the Max Planck Institute for Dynamics and Self-Organization (MPI-DS) have now derived universal rules to enable the de novo design of optimal enzymes.

The paper is published in the journal Chem Catalysis.

As an example, they considered the of breaking a dimer into two monomer molecules. Considering the geometry of such an enzyme-substrate-complex, they identified three golden rules that should be considered to build a functional enzyme.

Lockheed uses IBM quantum processor to solve major chemistry puzzle

Researchers at IBM and Lockheed Martin teamed up high-performance computing with quantum computing to accurately model the electronic structure of ‘open-shell’ molecules, methylene, which has been a hurdle with classic computing over the years. This is the first demonstration of the sample-based quantum diagonalization (SQD) technique to open-shell systems, a press release said.

Quantum computing, which promises computations at speeds unimaginable by even the fastest supercomputers of today, is the next frontier of computing. Leveraging quantum states of molecules to serve as quantum bits, these computers supersede computational capabilities that humanity has had access to in the past and open up new research areas.

A new approach could fractionate crude oil using much less energy

Separating crude oil into products such as gasoline, diesel, and heating oil is an energy-intensive process that accounts for about 6% of the world’s CO2 emissions. Most of that energy goes into the heat needed to separate the components by their boiling point.

In an advance that could dramatically reduce the amount of energy needed for fractionation, MIT engineers have developed a that filters the components of crude oil by their molecular size.

“This is a whole new way of envisioning a separation process. Instead of boiling mixtures to purify them, why not separate components based on shape and size? The key innovation is that the filters we developed can separate very at an atomistic length scale,” says Zachary P. Smith, an associate professor of chemical engineering at MIT and the senior author of the new study.

Hopes for alien life dim as doubts emerge over exoplanet K2-18b chemical signals

When astronomers announced last month they might have discovered the most promising hints of alien life yet on a distant planet, the rare good news raised hopes humanity could soon learn we are not alone in the universe.

But several recent studies looking into the same data have found that there is not enough evidence to support such lofty claims, with one scientist accusing the astronomers of “jumping the gun.”

The debate revolves around the planet K2-18b, which is 124 away in the Leo constellation.