Toggle light / dark theme

Online test-time adaptation for better generalization of interatomic potentials to out-of-distribution data

Molecular Dynamics (MD) simulation serves as a crucial technique across various disciplines including biology, chemistry, and material science1,2,3,4. MD simulations are typically based on interatomic potential functions that characterize the potential energy surface of the system, with atomic forces derived as the negative gradients of the potential energies. Subsequently, Newton’s laws of motion are applied to simulate the dynamic trajectories of the atoms. In ab initio MD simulations5, the energies and forces are accurately determined by solving the equations in quantum mechanics. However, the computational demands of ab initio MD limit its practicality in many scenarios. By learning from ab initio calculations, machine learning interatomic potentials (MLIPs) have been developed to achieve much more efficient MD simulations with ab initio-level accuracy6,7,8.

Despite their successes, the crucial challenge of implementing MLIPs is the distribution shift between training and test data. When using MLIPs for MD simulations, the data for inference are atomic structures that are continuously generated during simulations based on the predicted forces, and the training set should encompass a wide range of atomic structures to guarantee the accuracy of predictions. However, in fields such as phaseion9,10, catalysis11,12, and crystal growth13,14, the configurational space that needs to be explored is highly complex. This complexity makes it challenging to sample sufficient data for training and easy to make a potential that is not smooth enough to extrapolate to every relevant point. Consequently, a distribution shift between training and test datasets often occurs, which causes the degradation of test performance and leads to the emergence of unrealistic atomic structures, and finally the MD simulations collapse15.

Taming terahertz: MIT’s new chip design breaks through silicon barriers

Additionally, their ability to penetrate various materials without harmful radiation makes them valuable for security screening, quality control in industries, and chemical sensing. However, until now, it has been challenging to harness the potential of these waves in electronic devices due to several technological limitations.

Finally, a new study from researchers at MIT reveals a chip-based solution that can overcome these limitations and make terahertz waves more accessible than ever.

Terahertz (THz) waves are affected by the dielectric constant, a measure of how well a material can store and slow down an electric field. The lower this constant is the smoother terahertz waves can pass through a material.

Holograms Take 3D Printing to the Next Level — With Amazing Precision and Speed

Traditional 3D printing builds objects layer by layer, but tomographic volumetric additive manufacturing (TVAM) takes a different approach. It uses laser light to illuminate a rotating vial of resin, solidifying material only where the accumulated energy surpasses a specific threshold. A key advantage of TVAM is its speed—it can produce objects in seconds, whereas conventional layer-based 3D printing takes about 10 minutes. However, its efficiency is a major drawback, as only about 1% of the projected light contributes to forming the intended shape.

Researchers from EPFL’s Laboratory of Applied Photonic Devices, led by Professor Christophe Moser, and the SDU Centre for Photonics Engineering, led by Professor Jesper Glückstad, have developed a more efficient TVAM technique, as reported in Nature Communications

<em> Nature Communications </em> is an open-access, peer-reviewed journal that publishes high-quality research from all areas of the natural sciences, including physics, chemistry, Earth sciences, and biology. The journal is part of the Nature Publishing Group and was launched in 2010. “Nature Communications” aims to facilitate the rapid dissemination of important research findings and to foster multidisciplinary collaboration and communication among scientists.

“Forever Chemicals” Called PFAS Show Up in Your Food, Clothes, and Home

Forever chemicals affect your genes, according to a recent study.

Scientists have identified 11 genes that are consistently impacted by exposure to harmful chemicals that are found in everything from drinking water to food packaging.

Forever chemicals, also known as PFAS, are a global health concern. PFAS or “per-and poly-fluorinated alkyl substances” are also found in common household objects such as non-stick pans, stain or water-resistant materials as well as paints, carpets and clothes.

They are persistent in the environment and can accumulate in our bodies over time. They have been linked to a range of negative health outcomes, including impacting our genes. Some of the 11 genes that were impacted by PFAS are vital for neuronal health, and they showed altered expression levels after exposure to PFAS compounds. This discovery suggests these genes could serve as potential markers for detecting and monitoring PFAS-induced neurotoxicity.

However, the study also revealed that hundreds of other genes responded differently depending on the exact PFAS compound. While PFAS are known to accumulate in the brain due to their ability to cross the blood-brain barrier, this research provides new insights into the intricate ways these chemicals can interfere with gene expression and potentially disrupt our health. Concerns about PFAS stem from their potential health effects, which may include immune deficiency, liver cancer, and thyroid abnormalities. Due to their persistence and potential health risks, many governments are taking steps to regulate or ban the use of PFAS in various products.


These toxic chemicals are so common in consumer products and manufacturing that they’re everywhere—including inside our bodies.

This Strange Motion Keeps Appearing Everywhere — Even in High-Energy Collisions

Particles in high-energy nuclear collisions move in a way that follows a pattern known as Lévy walks, a motion found across many scientific fields.

Named after mathematician Paul Lévy, Lévy walks (or, in some cases, Lévy flights) describe a type of random movement seen in nature and various scientific processes. This pattern appears in diverse phenomena, from how predators search for food to economic fluctuations, microbiology, chemical reactions, and even climate dynamics.

Lévy walks in high-energy nuclear collisions.

Decades-Old Chemical Puzzle Solved: Scientists Synthesize Never-Before-Seen Bismuth Molecule

KIT researchers lay the foundation for new materials and chemical processes by synthesizing an unusual molecule.

Researchers at the Karlsruhe Institute of Technology (KIT) have successfully synthesized and stabilized a Bi₅⁻ ring—a molecule composed of five bismuth atoms—within a metal complex. This achievement fills a key gap in chemical research and opens new possibilities for applications in materials science, catalysis, and electronics. The study has been published in Nature Chemistry.

“By synthesizing the Bi5–ring, we’ve answered a long-standing question of basic research. In the future, this molecule could play an important role in the development of new materials and chemical processes,” said Professor Stefanie Dehnen from KIT’s Institute for Inorganic Chemistry, where she heads the cluster-based materials research group.

Chemists find greener path to making ethylene oxide, a key industrial chemical

Scientists have discovered a potentially greener way to produce a crucial industrial chemical used to make many everyday products, from plastics and textiles to antifreeze and disinfectants, according to a study published in Science and co-authored by Tulane University chemical engineer Matthew Montemore.

The breakthrough could significantly reduce from the manufacture of ethylene oxide, which has an estimated $40 billion global market. The current production process requires chlorine, which is toxic and emits millions of tons of carbon dioxide into the atmosphere annually.

The research team, led by Montemore, as well as Tufts University chemistry professor Charles Sykes and University of California Santa Barbara (UCSB) chemical engineering professor Phillip Christopher, found that adding small amounts of nickel atoms to silver catalysts can maintain while eliminating the need for chlorine in the process.

Solid state lubricant uses atomically thin sheets to achieve extremely low friction

Finding the right lubricant for the right purpose is a task that is often extremely important in industry. Not only to reduce friction, overheating and wear, but also to save energy. At TU Wien, the research groups of Prof Carsten Gachot (Tribology, Mechanical Engineering) and Prof Dominik Eder (Chemistry) are therefore working together to develop innovative, improved lubricants.

The team has now presented a new type of material with special properties: The lubricant COK-47 is not liquid like lubricating oil, but a powdery solid substance. On a nanoscale, it consists of stacks of atomically thin sheets, like a tiny stack of cards.

When the material comes into contact with , these platelets can slide past each other very easily—a so-called tribofilm is created, which ensures extremely low . This makes COK-47 a highly interesting in .

Chemical found in US drinking water is linked to 15% higher risk of colorectal cancer, 33% for bladder cancer

Here’s more evidence that your drinking water may be unsafe.

A new analysis out of Sweden reports that disinfecting water with chlorine creates chemical byproducts that can increase the risk of bladder cancer by 33% and colorectal cancer by 15%.

The culprit appears to be trihalomethanes (THMs), which are made up of four compounds — chloroform, bromodichloromethane, dibromochloromethane and bromoform. THMs are found in nearly all public water systems in the US and European Union.