Toggle light / dark theme

For tens of thousands of years, a microscopic creature lay frozen and immobile underground in the Siberian permafrost.

Yet, when scientists thawed it out, the tiny multicellular animal didn’t just revive — it reproduced, suggesting that there is a mechanism whereby multicellular animals can avoid cell damage during the freezing process and wake up ready to rumble.

“Our report is the hardest proof as of today that multicellular animals could withstand tens of thousands of years in cryptobiosis, the state of almost completely arrested metabolism,” said biologist Stas Malavin of the Soil Cryology Laboratory at the Institute of Physicochemical and Biological Problems in Soil Science in Russia.

Researchers from Cornell University’s School of Applied and Engineering Physics and Samsung’s Advanced Institute of Technology have created a first-of-its-kind metalens—a metamaterial lens—that can be focused using voltage instead of mechanically moving its components.

The proof of concept opens the door to a range of compact varifocal lenses for possible use in many imaging applications such as satellites, telescopes and microscopes, which traditionally focus light using curved lenses that adjust using mechanical parts. In some applications, moving traditional glass or plastic lenses to vary the focal distance is simply not practical due to space, weight or size considerations.

Metalenses are flat arrays of nano-antennas or resonators, less than a micron thick, that act as focusing devices. But until now, once a metalens was fabricated, its was hard to change, according to Melissa Bosch, doctoral student and first author of a paper detailing the research in the American Chemical Society’s journal Nano Letters.

They’ve only gone and upended a widely held scientific idea.


Lilia Koelemay, a graduate researcher at the University of Arizona, said in a statement about the study that “the detection of these organic molecules at the galactic edge may imply that organic chemistry is still prevalent at the outer reaches of the galaxy, and the [galatic habitable zone] may extend much further from the galactic center than the currently established boundary.”

Koelemay also said, “The widely held assumption was that in the outskirts of our galaxy, the chemistry necessary to form organics just doesn’t occur.”

What’s next — The new finding overturns this assumption, and researchers can now widen the search for life to stars closer to the galaxy’s outer edge, a no-man’s-land of cold matter, isolated stars, and black holes left from long-ago stellar explosions. It’s a place Koelemay says has fewer stars like our life-giving Sun.

Quantum computing began in the early 1980s. It operates on principles of quantum physics rather than the limitations of circuits and electricity which is why it is capable of processing highly complex mathematical problems so efficiently. Quantum computing could one day achieve things that classical computing simply cannot. The evolution of quantum computers has been slow, but things are accelerating, thanks to the efforts of academic institutions such as Oxford, MIT, and the University of Waterloo, as well as companies like IBM, Microsoft, Google, and Honeywell.

IBM has held a leadership role in this innovation push and has named optimization as the most likely application for consumers and organizations alike.

Honeywell expects to release what it calls the “world’s most powerful quantum computer” for applications like fraud detection, optimization for trading strategies, security, machine learning, and chemistry and materials science.

David Sinclair is a geneticist at Harvard and author of Lifespan.

Nature – Reversal of biological clock restores vision in old mice

Sinclair and his team restored vision in old mice and in mice with damaged retinal nerves by resetting some of the thousands of chemical marks that accumulate on DNA as cells age. They are now working to rejuvenate the brains of old mice. This work is so promising that Sinclair believes he can get to human trials within two years. Sinclair is using three genes to reset the age of cells.

Bdelloid rotifers are multicellular animals so small you need a microscope to see them. Despite their size, they’re known for being tough, capable of surviving through drying, freezing, starvation, and low oxygen. Now, researchers reporting in the journal Current Biology on June 7 have found that not only can they withstand being frozen, but they can also persist for at least 24000 years in the Siberian permafrost and survive.

“Our report is the hardest proof as of today that multicellular animals could withstand tens of thousands of years in cryptobiosis, the state of almost completely arrested metabolism,” says Stas Malavin of the Soil Cryology Laboratory at the Institute of Physicochemical and Biological Problems in Soil Science in Pushchino, Russia.

The Soil Cryology Lab specializes in isolating from the ancient permafrost in Siberia. To collect samples, they use a in some of the most remote Arctic locations.

Circa 2015 brain immortality through aldehyde stabilized cryopreservation.


We describe here a new cryobiological and neurobiological technique, aldehyde-stabilized cryopreservation (ASC), which demonstrates the relevance and utility of advanced cryopreservation science for the neurobiological research community. ASC is a new brain-banking technique designed to facilitate neuroanatomic research such as connectomics research, and has the unique ability to combine stable long term ice-free sample storage with excellent anatomical resolution. To demonstrate the feasibility of ASC, we perfuse-fixed rabbit and pig brains with a glutaraldehyde-based fixative, then slowly perfused increasing concentrations of ethylene glycol over several hours in a manner similar to techniques used for whole organ cryopreservation. Once 65% w/v ethylene glycol was reached, we vitrified brains at −135 °C for indefinite long-term storage. Vitrified brains were rewarmed and the cryoprotectant removed either by perfusion or gradual diffusion from brain slices. We evaluated ASC-processed brains by electron microscopy of multiple regions across the whole brain and by Focused Ion Beam Milling and Scanning Electron Microscopy (FIB-SEM) imaging of selected brain volumes. Preservation was uniformly excellent: processes were easily traceable and synapses were crisp in both species. Aldehyde-stabilized cryopreservation has many advantages over other brain-banking techniques: chemicals are delivered via perfusion, which enables easy scaling to brains of any size; vitrification ensures that the ultrastructure of the brain will not degrade even over very long storage times; and the cryoprotectant can be removed, yielding a perfusable aldehyde-preserved brain which is suitable for a wide variety of brain assays.

MIT engineers have discovered a new way of generating electricity using tiny carbon particles that can create a current simply by interacting with liquid surrounding them.

The liquid, an , draws electrons out of the particles, generating a current that could be used to drive or to power micro-or nanoscale robots, the researchers say.

“This mechanism is new, and this way of generating is completely new,” says Michael Strano, the Carbon P. Dubbs Professor of Chemical Engineering at MIT. “This technology is intriguing because all you have to do is flow a solvent through a bed of these particles. This allows you to do electrochemistry, but with no wires.”

With the rise of the lithium-based battery, demand for this soft, silvery-white metal – the lightest solid element in the periodic table – has exploded. With the race to zero carbon by 2050 gathering steam, forcing the electrification of transport, lithium will be an even more valuable asset in the next 30 years.

The supply of raw materials for batteries could even end up being a national security issue, too; China’s global leadership on high-volume EV production has put it ahead of the game, and while the majority of ground-based lithium reserves are in the “lithium triangle” of Chile, Bolivia and Argentina, China controls more than half’s the world’s supply simply through investments and ownership. It has shown in the past that it’s not afraid to wield commodity supplies as a weapon.

But as with other metals like uranium, land-based lithium reserves pale in comparison to what’s out there in the sea. According to researchers at Saudi Arabia’s King Abdullah University of Science and Technology (KAUST), there’s about 5000 times as much lithium in the oceans as there is in land deposits, and a newly developed technology could start extracting it cheaply enough to make the big time – while producing hydrogen gas, chorine gas and desalinated water as a bonus.