Toggle light / dark theme

Using electricity, scientists find promising new method of boosting chemical reactions

Electricity could be used to enhance a specific chemical reaction in the synthesis of prospective medicinal drugs.


As the world moves away from gas towards electricity as a greener power source, the to-do list goes beyond cars. The vast global manufacturing network that makes everything from our batteries to our fertilizers needs to flip the switch, too.

A study from UChicago chemists found a way to use electricity to boost a type of chemical reaction often used in synthesizing new candidates for pharmaceutical drugs.

Published Jan. 2 in Nature Catalysis, the research is an advance in the field of electrochemistry and shows a path forward to designing and controlling reactions—and making them more sustainable.

Technique could efficiently solve partial differential equations for numerous applications

In fields such as physics and engineering, partial differential equations (PDEs) are used to model complex physical processes to generate insight into how some of the most complicated physical and natural systems in the world function.

To solve these difficult equations, researchers use high-fidelity numerical solvers, which can be very time consuming and computationally expensive to run. The current simplified alternative, data-driven surrogate models, compute the goal property of a solution to PDEs rather than the whole solution. Those are trained on a set of data that has been generated by the high-fidelity solver, to predict the output of the PDEs for new inputs. This is data-intensive and expensive because complex physical systems require a large number of simulations to generate enough data.

In a new paper, “Physics-enhanced deep surrogates for ,” published in December in Nature Machine Intelligence, a new method is proposed for developing data-driven surrogate models for complex physical systems in such fields as mechanics, optics, thermal transport, fluid dynamics, , and .

Nanorings Uncovered: Astonishing New Building Blocks for Chemistry

New Compounds for Organometallic Chemistry – Sandwich Complexes in the Form of Rings Are Kept Together by Their Own Energy.

Sandwich compounds are special chemical compounds used as basic building blocks in organometallic chemistry. So far, their structure has always been linear. Recently, researchers of Karlsruhe Institute of Technology (KIT) and the University of Marburg were the first to make stacked sandwich complexes form a nano-sized ring. Physical and other properties of these cyclocene structures will now be further investigated.

Evolution of Sandwich Complexes.

Here comes the robo-lab

Laboratory “copilots” and automated labs are AI’s latest contribution to speeding up the development of new drugs, chemicals and materials. Why it matters: Scientific discovery itself must speed up if the world is to address its challenges — from climate change to personalized treatments for cancer — fast enough to make a difference. In scientific research, “manual effort is not scalable,” writes Microsoft Health Futures’ Hoifung Poon in the…

A Carbon-lite Atmosphere could be a Sign of Water and Life on other Terrestrial Planets

A low carbon abundance in planetary atmospheres could be a signature of habitability. Scientists at MIT, the University of Birmingham, and elsewhere say that astronomers’ best chance of finding liquid water, and even life on other planets, is to look for the absence, rather than the presence, of a chemical feature in their atmospheres.

The researchers propose that if a terrestrial planet has substantially less CO2 in its atmosphere compared to other planets in the same system, it could be a sign of liquid water — and possibly life — on that planet’s surface.

What’s more, this new signature is within the sights of NASA’s James Webb Space Telescope (JWST). While scientists have proposed other signs of habitability, those features are challenging if not impossible to measure with current technologies. The team says this new signature, of relatively depleted carbon dioxide, is the only sign of habitability that is detectable now.

The Shock Factor: Electricity’s Revolutionary Impact on Chemical Synthesis

University of Chicago scientists have developed a way to improve chemical reactions in drug manufacturing using electricity. This breakthrough in electrochemistry, enhancing efficiency and sustainability, opens new avenues in green chemical production. Credit: SciTechDaily.com.

As the world moves away from gas towards electricity as a greener power source, the to-do list goes beyond cars. The vast global manufacturing network that makes everything from our batteries to our fertilizers needs to flip the switch, too.

A study from UChicago chemists found a way to use electricity to boost a type of chemical reaction often used in synthesizing new candidates for pharmaceutical drugs.

Metal-organic frameworks study unravels mechanism for capturing water from air

Researchers from the Helmholtz-Zentrum Dresden-Rossendorf and Dresden University of Technology have unraveled the water adsorption mechanism in certain microporous materials—so-called hierarchical metal-organic frameworks (MOFs)—while probing them on the atomic scale.

Discovered only about 25 years ago, their special properties quickly led to a reputation as “miracle materials”—which, as it turned out, can even harvest water from air. The researchers describe how the material achieves this in ACS Applied Materials & Interfaces.

“These very special materials are highly porous solids made of metals or metal-oxygen clusters which are connected in a modular way by pillars of organic chemicals. This 3D arrangement leads to networks of cavities reminiscent of the pores of a kitchen sponge. It is precisely these cavities that we are interested in,” says Dr. Ahmed Attallah of HZDR´s Institute of Radiation Physics.

Photochemistry and a new catalyst could make fertilizer more sustainable

Georgia Tech engineers are working to make fertilizer more sustainable—from production to productive reuse of the runoff after application—and a pair of new studies is offering promising avenues at both ends of the process.

In one paper, researchers have unraveled how , water, carbon, and light can interact with a catalyst to produce ammonia at and pressure, a much less energy-intensive approach than current practice. The second paper describes a stable catalyst able to convert waste back into nonpolluting nitrogen that could one day be used to make new fertilizer.

Significant work remains on both processes, but the senior author on the papers, Marta Hatzell, said they’re a step toward a more sustainable cycle that still meets the needs of a growing worldwide population.

Tesla Researcher Demonstrates 100-Year, 4-Million-Mile Battery

face_with_colon_three year 2022.


One of the biggest concerns about EVs is that the batteries will need replacing after a few years, at great expense. After all, your smartphone battery is likely to have seen better days within as little as three years. But a Tesla researcher is getting ready to kick this idea into touch once and for all, after demonstrating batteries that could potentially outlive most human beings.

Tesla enthusiasts are likely to have heard of Jeff Dahn already. He’s a professor at Dalhousie University and has been a research partner with Tesla since 2016. His focus has been to increase the energy density and lifetime of lithium-ion batteries, as well as reducing their cost. Dahn appears to have hit the motherload along with colleagues on his research team. In a paper published in the Journal of the Electrochemical Society, the group claims to have created a battery design that could last 100 years under the right conditions.

Dahn’s paper contrasts cells based on Li[Ni0.5Mn0.3Co0.2]O2 chemistry (“NMC 532”) to LiFePO4. The latter is the “Lithium Iron Phosphate” (aka LFP) chemistry that Tesla is currently using in Chinese-built standard Model 3 cars imported into Europe. The LFP chemistry has lower energy density than more widespread Lithium-Ion alternatives, but is cheaper, more durable, and allegedly safer, too. LFP can last up to 12,000 charge-discharge cycles, so beating it in this regard is no mean feat. Dahn’s NMC 532 cells showed no capacity loss after nearly 2,000 cycles. The paper extrapolates this out to imply a 100-year lifespan (they obviously haven’t been testing the battery that long).

/* */