Toggle light / dark theme

Stanford University researchers have discovered a rapid and sustainable way to synthetically produce a promising cancer-fighting compound right in the lab. The compound’s availability has been limited because its only currently known natural source is a single plant species that grows solely in a small rainforest region of Northeastern Australia.

The compound, designated EBC-46 and technically called tigilanol tiglate, works by promoting a localized against tumors. The response breaks apart the ’s blood vessels and ultimately kills its cancerous cells. EBC-46 recently entered into following its extremely high success rate in treating a kind of cancer in dogs.

Given its complex structure, however, EBC-46 had appeared synthetically inaccessible, meaning no plausible path seemed to exist for producing it practically in a laboratory. However, thanks to a clever process, the Stanford researchers demonstrated for the first time how to chemically transform an abundant, plant-based starting material into EBC-46.

An upcycling method changes the most widely produced plastic into the second most widely produced plastic, making it more sustainable.

A new technique has been developed by scientists that transforms polyethylene (PE), the most widely produced plastic, into polypropylene (PP), the second most produced plastic.


Upcycling plastic efficiently to eliminate waste

The purpose of this process is to reduce greenhouse emissions. “The world needs more and better options for extracting the energy and molecular value from its waste plastics,” said Susannah Scott, co-lead author of the study and Distinguished Professor and Mellichamp Chair of Sustainable Catalytic Processing at UC Santa Barbara. This new study was published in the Journal of the American Chemical Society.

The complexity of life on Earth was derived from simplicity: From the first protocells to the growth of any organism, individual cells aggregate into basic clumps and then form more complex structures. The earliest cells lacked complicated biochemical machinery; to evolve into multicellular organisms, simple mechanisms were necessary to produce chemical signals that prompted the cells to both move and form colonies.

Replicating this behavior in synthetic systems is necessary to advance fields such as soft robotics. Chemical engineering researchers at the University of Pittsburgh Swanson School of Engineering have established this feat in their latest advancement in .

The research, “Lifelike behavior of chemically oscillating mobile capsules,” was published in the journal Matter. The lead author is Oleg E. Shklyaev, post-doctoral associate with Anna Balazs, Distinguished Professor of Chemical and Petroleum Engineering and the John A. Swanson Chair of Engineering.

Thanks to new RNA vaccines, we humans have been able to protect ourselves incredibly quickly from new viruses like SARS-CoV-2, the virus that causes COVID-19. These vaccines insert a piece of ephemeral genetic material into the body’s cells, which then read its code and churn out a specific protein—in this case, telltale “spikes” that stud the outside of the coronavirus—priming the immune system to fight future invaders.

The technique is effective, and has promise for all sorts of therapies, says Eerik Kaseniit, Ph.D. student in bioengineering at Stanford. At the moment, though, these sorts of RNA therapies can’t focus on specific cells. Once injected into the body, they indiscriminately make the encoded protein in every cell they enter. If you want to use them to treat only one kind of cell—like those inside a cancerous tumor—you’ll need something more precise.

Kaseniit and his advisor, assistant professor of chemical engineering Xiaojing Gao, may have found a way to make this possible. They’ve created a new tool called an RNA “sensor”—a strand of lab-made RNA that reveals its contents only when it enters particular tissues within the body. The method is so exact that it can home in on both and cell states, activating only when its target cell is creating a certain RNA, says Gao. The pair published their findings Oct. 5 in the journal Nature Biotechnology.

Although just cute little creatures at first glance, the microscopic geckos and octopuses fabricated by 3D laser printing in the molecular engineering labs at Heidelberg University could open up new opportunities in fields such as microrobotics or biomedicine.

The printed microstructures are made from —known as smart polymers—whose size and can be tuned on demand and with high precision. These “life-like” 3D microstructures were developed in the framework of the “3D Matter Made to Order” (3DMM2O) Cluster of Excellence, a collaboration between Ruperto Carola and the Karlsruhe Institute of Technology (KIT).

“Manufacturing programmable materials whose mechanical properties can be adapted on demand is highly desired for many applications,” states Junior Professor Dr. Eva Blasco, group leader at the Institute of Organic Chemistry and the Institute for Molecular Systems Engineering and Advanced Materials of Heidelberg University.

The researchers brilliantly demonstrated, for the very first time, how to chemically transform an abundant, plant-based starting material into EBC-46.

In what can be called a major scientific breakthrough, Stanford researchers have discovered a “rapid and sustainable” way to synthetically produce a promising cancer-fighting compound, designated EBC-46, right in the lab, according to a press release published by the institution.

This was “something many people had considered impossible,” as the compound’s only currently known source is a single plant species that grows solely in a small rainforest region of Northeastern Australia.

An electrolyte moves ions – atoms that have been charged by either gaining or losing an electron – between the two electrodes in a battery. Lithium ions are created at the negative electrode, the anode, and flow to the cathode where they gain electrons. When a battery charges, the ions move back to the anode.

Battery innovations can take years to come to fruition because there are so many different chemicals involved in their production. Working out the ratio of chemicals and optimising them for peak use can be an arduous task.

However, when the research team used an automated arrangement of pumps, valves, vessels, and other lab equipment to mix together three potential solvents and one salt, and then fed those results through ‘Dragonfly’, they found that the AI delivered six solutions that out-performed an existing electrolyte solution.

When it comes to developing treatments and eventual cures for diseases, being able to diagnose a condition early and accurately makes a huge difference – and scientists have now developed a quick, reliable method of identifying people with Parkinson’s disease.

The test can be run in as little as 3 minutes after a skin swab has been taken. The swab is analyzed for changes in the chemical mix of sebum, a natural waxy oil produced by the skin that has previously been linked to Parkinson’s.

At the moment, there’s no conclusive test for Parkinson’s disease – specialists look at symptoms, medical history, the results of a lengthy physical examination, and in some cases, a brain scan to diagnose the condition.