Toggle light / dark theme

New study unveils ultra-high sensitivity broadband flexible photodetectors

A research team, affiliated with UNIST, has unveiled a flexible photodetector, capable of converting light across a broad spectrum—from visible to near-infrared—into electrical signals. This innovation promises significant advancements in technologies that require simultaneous detection of object colors and internal structures or materials.

Led by Professor Changduk Yang from the Department of Energy & Chemical Engineering, the research team developed perovskite-organic heterojunction photodetectors (POH-PDs) that combine high sensitivity with exceptional accuracy in the near-infrared (NIR) region. The findings have been published in Advanced Functional Materials.

Photodetectors are essential components in numerous applications, including smartphone displays that automatically adjust brightness and security systems that utilize vein recognition.

Measuring metabolic flux in brain cancer patients with AI based digital twin

The study, published in Cell Metabolism, builds on previous research showing that some gliomas can be slowed down through the patient’s diet. If a patient isn’t consuming certain protein building blocks, called amino acids, then some tumors are unable to grow. However, other tumors can produce these amino acids for themselves, and can continue growing anyway. Until now, there was no easy way to tell which patients would benefit from dietary restrictions.

The digital twin’s ability to map metabolic activity in tumors also helped determine whether a drug that prevents tumors from producing a building block for replicating and repairing DNA would work, as some cells can obtain that molecule from their environments.

To overcome challenges in mapping tumor metabolism inside the brain, the team developed a computer-based “digital twin” that can predict how an individual patient’s brain tumor will react to each treatment.

“Typically, metabolic measurements during surgeries to remove tumors can’t provide a clear picture of tumor metabolism—surgeons can’t observe how metabolism varies with time, and labs are limited to studying tissues after surgery. By integrating limited patient data into a model based on fundamental biology, chemistry and physics, we overcame these obstacles,” said a co-corresponding author of the study.

The digital twin uses patient data obtained through blood draws, metabolic measurements of the tumor tissue and the tumor’s genetic profile. The digital twin then calculates the speed at which the cancer cells consume and process nutrients, known as metabolic flux.

“This is the first time a machine learning and AI-based approach has been used to measure metabolic flux directly in patient tumors,” said a co-first author of the study.

The researchers built a type of deep learning model called a convolutional neural network and trained it on synthetic patient data, generated based on known biology and chemistry and constrained by measurements from eight patients with glioma who were infused with labeled glucose during surgery. By comparing their computer models with different data from six of those patients, they found the digital twins could predict metabolic activity with high accuracy. In experiments conducted on mice, the team confirmed that the diet only slowed tumor growth in mice that the digital twin had identified as good candidates for the treatment.

Forever Chemicals Linked to Multiple Sclerosis in Concerning New Study

People who are exposed to certain forever chemicals may be at greater risk of developing multiple sclerosis (MS), according to new research.

No one knows why that is, but it could help explain why, over the past 30 years, the prevalence of MS has increased by an average of 26 percent globally. In some nations, cases have more than doubled since 1990.

MS is an autoimmune disease of the central nervous system with no known singular cause and no known cure.

MXene nanoscrolls could improve energy storage, biosensors and more

Researchers from Drexel University who discovered a versatile type of two-dimensional conductive nanomaterial called MXene nearly a decade and a half ago, have now reported on a process for producing its one-dimensional cousin: the MXene nanoscroll. The group posits that these materials, which are 100 times thinner than human hair yet more conductive than their two-dimensional counterparts, could be used to improve the performance of energy storage devices, biosensors and wearable technology.

Their finding, published in the journal Advanced Materials, offers a scalable method for producing the nanoscrolls from a MXene precursor with precise control over their shape and chemical structures.

“Two-dimensional morphology is very important in many applications. However, there are applications where 1D morphology is superior,” said Yury Gogotsi, Ph.D., Distinguished University and Bach professor in Drexel’s College of Engineering, who was a corresponding author of the paper.

Cell Signaling and Communication between Cells

Cell signaling is how cells communicate through reception, transduction, and response, using chemical ligands that bind to specific receptors to transmit messages.

Communication can happen through direct contact (like gap junctions), paracrine signaling (short distances), endocrine signaling (long distances via the bloodstream), or autocrine signaling (the cell signals itself).

This process is crucial for coordinating cell functions and maintaining homeostasis in multicellular organisms.

Bitly: Among adults with treatment-refractory

HER2-positive BiliaryTractCancer, zanidatamab produced sustained, meaningful clinical responses and extended survival compared to prior standards.

In patients with immunohistochemistry (IHC) 3+ tumors, response rates and overall survival were notably higher than those with IHC 2+ tumors, substantiating the use of reflex IHC testing to identify candidates for HER2-targeted therapy.

Safety remained consistent over 33 months of follow-up, and the ongoing HERIZON-BTC-302 phase 3 trial is assessing zanidatamab alongside first-line standard care in this setting.


This is a 404 error, which means you’ve clicked on a bad link or entered an invalid URL. Maybe what you are looking for can be found at Bitly.com. P.S. Bitly links are case sensitive.

Novel ‘XFELO’ laser system produces razor-sharp X-ray light

A team of engineers and scientists has shown for the first time that a hard-X-ray cavity can provide net X-ray gain, with X-ray pulses being circulated between crystal mirrors and amplified in the process, much like happens with an optical laser. The result of the proof-of-concept at European XFEL is a particularly coherent, laser-like light of a quality that is unprecedented in the hard X-ray spectrum.

Lasing inside a cavity had been challenging to achieve with short-wavelength X-rays for a variety of reasons, including—on a basic level—that the nature of the light makes it difficult to reflect the beam at large angles. The “XFELO” (short for: X-Ray Free-Electron Laser Oscillator) technique opens new perspectives for scientific investigations, from ultrafast chemical reactions to detailed analyses of the smallest biological structures. The research is published in the journal Nature.

New ABF crystal delivers high-performance vacuum ultraviolet nonlinear optical conversion

Vacuum ultraviolet (VUV, 100–200 nm) light sources are indispensable for advanced spectroscopy, quantum research, and semiconductor lithography. Although second harmonic generation (SHG) using nonlinear optical (NLO) crystals is one of the simplest and most efficient methods for generating VUV light, the scarcity of suitable NLO crystals has long been a bottleneck.

To address this problem, a research team led by Prof. Pan Shilie at the Xinjiang Technical Institute of Physics and Chemistry of the Chinese Academy of Sciences (CAS) has developed the fluorooxoborate crystal NH4B4O6F (ABF)—offering an effective solution to the practical challenges of VUV NLO materials. The team’s findings were recently published in Nature.

The team’s key achievement is the development of centimeter-scale, high-quality ABF crystal growth and advanced anisotropic crystal processing technologies. Notably, ABF uniquely integrates a set of conflicting yet critical properties required for VUV NLO materials—excellent VUV transparency, a strong NLO coefficient, and substantial birefringence for VUV phase-matching—while fulfilling stringent practical criteria: large crystal size for fabricating devices with specific phase-matching angles, stable physical/chemical properties, a high laser-induced damage threshold, and suitable processability. This breakthrough resolves the long-standing field challenge where no prior crystal has met all these criteria simultaneously.

Establishing design principles for achieving ultralow thermal conductivity via controlled chemical disorder

A major challenge in thermal-management and thermal-insulation technologies, across multiple industries, is the lack of materials that simultaneously offer low thermal conductivity, mechanical robustness, and scalable fabrication routes.

Discovering materials that exhibit completely insulating thermal behavior—or, conversely, extraordinarily high thermal conductivity—has long been a dream for researchers in materials physics. Traditionally, amorphous materials are known to possess very low thermal conductivity.

This naturally leads to an important question: Can a crystalline material be engineered to achieve thermal conductivity close to that of an amorphous solid? Such a material would preserve the structural stability of a crystal while achieving exceptionally low thermal conductivity.

Brewing possibilities: Using caffeine to edit gene expression

What if a cup of coffee could help treat cancer? Researchers at the Texas A&M Health Institute of Biosciences and Technology believe it’s possible. By combining caffeine with the use of CRISPR—a gene-editing tool known as clustered regularly interspaced short palindromic repeats—scientists are unlocking new treatments for long-term diseases, like cancer and diabetes, using a strategy known as chemogenetics.

The work is published in the journal Chemical Science.

Yubin Zhou, professor and director of the Center for Translational Cancer Research at the Institute of Biosciences and Technology, specializes in utilizing groundbreaking tools and technology to study medicine at the cellular, epigenetic and genetic levels. Throughout his career and over 180 publications, he has sought answers to medical questions by using highly advanced tools like CRISPR and chemogenetic control systems.

/* */