Toggle light / dark theme

Refractory organic pollutants, including phenols, perfluorinated compounds, and antibiotics, are abundant in various industrial wastewater streams such as chemical, pharmaceutical, coking, and dyeing sectors, as well as municipal and domestic sources. These pollutants pose significant threats to ecological well-being and human health.

The imperative to achieve complete removal of organic contaminants from water and facilitate water recycling is paramount for enhancing and ensuring sustainable economic and social progress. Addressing the efficient removal of recalcitrant organic pollutants in water is not only a focal point in environmental chemical pollution control research but also a pivotal technical challenge constraining industrial wastewater reuse.

Advanced oxidation processes (AOPs), especially heterogeneous AOPs, yield strongly including ·OH, ·O2-, and ·SO4- to oxidize organic pollutants under ambient conditions, are appealing wastewater treatment technologies for decentralized systems. AOPs often need excessive energy input (UV light or electricity) to activate soluble oxidants (H2O2, O3, persulfates), thus more cost-effective AOPs are urgently required.

Humankind on the verge of evolutionary traps, a new study: …For the first time, scientists have used the concept of evolutionary traps on human societies at large.


For the first time, scientists have used the concept of evolutionary traps on human societies at large. They find that humankind risks getting stuck in 14 evolutionary dead ends, ranging from global climate tipping points to misaligned artificial intelligence, chemical pollution, and accelerating infectious diseases.

The evolution of humankind has been an extraordinary success story. But the Anthropocene—the proposed geological epoch shaped by us humans—is showing more and more cracks. Multiple global crises, such as the COVID-19 pandemic, , , financial crises, and conflicts have started to occur simultaneously in something which scientists refer to as a polycrisis.

Humans are incredibly creative as a species. We are able to innovate and adapt to many circumstances and can cooperate on surprisingly large scales. But these capabilities turn out to have unintentional consequences. Simply speaking, you could say that the human species has been too successful and, in some ways, too smart for its own future good, says Peter Søgaard Jørgensen, researcher at the Stockholm Resilience Center at Stockholm University and at the Royal Swedish Academy of Sciences’ Global Economic Dynamics and the Biosphere program and Anthropocene laboratory.

On July 12, 2023, a new research paper was published in Aging, titled, “Chemically induced reprogramming to reverse cellular aging.”

BUFFALO, NY– July 12, 2023 – In a groundbreaking study, researchers have unlocked a new frontier in the fight against aging and age-related diseases. The study, conducted by a team of scientists at Harvard Medical School, has published the first chemical approach to reprogram cells to a younger state. Previously, this was only achievable using a powerful gene therapy.

On July 12, 2023, researchers Jae-Hyun Yang, Christopher A. Petty, Thomas Dixon-McDougall, Maria Vina Lopez, Alexander Tyshkovskiy, Sun Maybury-Lewis, Xiao Tian, Nabilah Ibrahim, Zhili Chen, Patrick T. Griffin, Matthew Arnold, Jien Li, Oswaldo A. Martinez, Alexander Behn, Ryan Rogers-Hammond, Suzanne Angeli, Vadim N. Gladyshev, and David A. Sinclair from Harvard Medical School, University of Maine and Massachusetts Institute of Technology (MIT) published a new research paper in Aging, titled, “Chemically induced reprogramming to reverse cellular aging.”

MIT researchers and colleagues have demonstrated a way to precisely control the size, composition, and other properties of nanoparticles key to the reactions involved in a variety of clean energy and environmental technologies. They did so by leveraging ion irradiation, a technique in which beams of charged particles bombard a material.

They went on to show that created this way have superior performance over their conventionally made counterparts.

“The materials we have worked on could advance several technologies, from fuel cells to generate CO2-free electricity to the production of clean hydrogen feedstocks for the [through electrolysis cells],” says Bilge Yildiz, leader of the work and a professor in MIT’s Department of Nuclear Science and Engineering and Department of Materials Science and Engineering.

Every cell in the human body contains the same genetic instructions, encoded in its DNA. However, out of about 30,000 genes, each cell expresses only those genes that it needs to become a nerve cell, immune cell, or any of the other hundreds of cell types in the body.

Each cell’s fate is largely determined by chemical modifications to the proteins that decorate its DNA; these modification in turn control which genes get turned on or off. When copy their DNA to divide, however, they lose half of these modifications, leaving the question: How do cells maintain the of what kind of cell they are supposed to be?

A new MIT study proposes a theoretical that helps explain how these memories are passed from generation to generation when cells divide. The research team suggests that within each cell’s nucleus, the 3D folding pattern of its genome determines which parts of the genome will be marked by these chemical modifications.

The core–mantle boundary (CMB) is the interface between the Earth’s iron metal core and the thick rocky layer of mantle just above the core. It is a world of extremes—temperatures thousands of degrees Fahrenheit and pressures over a million times the pressure at the surface of the Earth. While it may seem far away from our environment on Earth’s surface, plumes of material from the CMB can ascend upwards through the planet over tens of millions of years, influencing the chemistry, geologic structure, and plate tectonics of the surface world where we live.

Though scientists cannot travel to the center of the Earth to study the CMB, they can get clues about what lies beneath the planet’s surface by measuring earthquakes. Seismic waves travel at different speeds depending on the material they are traveling through, allowing researchers to infer what lies deep below the surface using seismic signatures. This is analogous to how ultrasound uses waves of sound to image inside of the human body.

Recent research shows that the base of Earth’s mantle is actually complex and heterogeneous—in particular, there are mountain-like regions where seismic waves mysteriously slow down. These blobs, named ultralow velocity zones (ULVZs) and first discovered by Caltech’s Don Helmberger, are dozens of kilometers thick and lie around 3,000 kilometers beneath our feet.

For the first time in space, scientists have produced a mixture of two quantum gases made of two types of atoms. Accomplished with NASA’s Cold Atom Laboratory aboard the International Space Station, the achievement marks another step toward bringing quantum technologies currently available only on Earth into space.

Physicists at Leibniz University Hannover (LUH), part of a collaboration led by Prof. Nicholas Bigelow, University of Rochester, provided the theoretical calculations necessary for this achievement. While quantum tools are already used in everything from cell phones to GPS to , in the future, quantum tools could be used to enhance the study of planets, including our own, as well as to help solve mysteries of the universe and deepen our understanding of the fundamental laws of nature.

The new work, performed remotely by scientists on Earth, is described in Nature.

Abrain is nothing if not communicative. Neurons are the chatterboxes of this conversational organ, and they speak with one another by exchanging pulses of electricity using chemical messengers called neurotransmitters. By repeating this process billions of times per second, a brain converts clusters of chemicals into coordinated actions, memories, and thoughts.

Researchers study how the brain works by eavesdropping on that chemical conversation. But neurons talk so loudly and often that if there are other, quieter voices, it might be hard to hear them.

While the chemistry is different from traditional lithium-ion batteries, it’s part of a power pack with big advantages, including greater energy storage (estimated at up to 15 times that of lithium-ion) in relation to mass, a metric referred to as energy density.

Other perks include easy recyclability, being planet-friendly, and being cost-effective, per the ET report, which was written with benefits to the Indian market in mind.

“It is a long-range, budget-friendly, lightweight, and recyclable source of energy that can arguably be a saviour in the EV market,” Kriti Saraiya wrote for ET.