Toggle light / dark theme

Bioelectrosynthesis platform enables switch-like, precision control of cell signaling

Cells use various signaling molecules to regulate the nervous, immune, and vascular systems. Among these, nitric oxide (NO) and ammonia (NH₃) play important roles, but their chemical instability and gaseous nature make them difficult to generate or control externally.

A KAIST research team has developed a platform that generates specific signaling molecules in situ from a single precursor under an applied electrical signal, enabling switch-like, precise spatiotemporal control of cellular responses. This approach could provide a foundation for future medical technologies such as electroceuticals, electrogenetics, and personalized cell therapies.

The research team led by Professor Jimin Park from the Department of Chemical and Biomolecular Engineering, in collaboration with Professor Jihan Kim’s group, has developed a bioelectrosynthesis platform capable of producing either or on demand using only an electrical signal. The platform allows control over the timing, spatial range, and duration of cell responses.

Molecular hybridization achieved through quantum vacuum manipulation

Interactions between atoms and molecules are facilitated by electromagnetic fields. The bigger the distance between the partners involved, the weaker these mutual interactions are. In order for the particles to be able to form natural chemical bonds, the distance between them must usually be approximately equal to their diameter.

Using an which strongly alters the , scientists at the Max Planck Institute for the Science of Light (MPL) have succeeded for the first time in optically “bonding” several molecules at greater distances. The physicists are thus experimentally creating synthetic states of coupled molecules, thereby establishing the foundation for the development of new hybrid light-matter states. The study is published in the journal Proceedings of the National Academy of Sciences.

Atoms and molecules have clearly defined, discrete energy levels. When they are combined to form a , the energy states change. This process is referred to as molecular hybridization and is characterized by the overlap of electron orbitals, i.e., the areas where electrons typically reside. However, at a scale of a few nanometers, the interaction becomes so weak that molecules are no longer able to communicate with each other.

Tiny robots use sound to self-organize into intelligent groups

Animals like bats, whales and insects have long used acoustic signals for communication and navigation. Now, an international team of scientists has taken a page from nature’s playbook to model micro-sized robots that use sound waves to coordinate into large swarms that exhibit intelligent-like behavior.

The robot groups could one day carry out complex tasks like exploring disaster zones, cleaning up pollution, or performing from inside the body, according to team lead Igor Aronson, Huck Chair Professor of Biomedical Engineering, Chemistry, and Mathematics at Penn State.

“Picture swarms of bees or midges,” Aronson said. “They move, that creates sound, and the sound keeps them cohesive, many individuals acting as one.”

Scientists May Have Finally Found the Strange, Frozen Hideout of Missing Sulfur

Scientists may have found the hiding place of missing cosmic sulfur—in icy space dust, bound in crown-shaped and chain-like molecules that escape detection. For years, scientists studying the chemistry of the cosmos have searched for sulfur in space, only to discover that it appears to be far les

Molecular mechanisms show how the blood-brain barrier gets leakier with age

A new study from researchers at the University of Illinois Chicago reveals how the blood-brain barrier gets leakier with age, contributing to memory deficits. The study, published in Cell Reports, uncovered the molecular mechanisms behind this process and could provide new therapeutic targets to address cognitive decline earlier in the aging process.

The is a layer of cells lining the brain’s blood vessels that keep viruses, bacteria and toxins out while allowing helpful nutrients and chemicals in. A key structure of the blood-brain barrier are tight junctions that act as bridges between cells, restricting entry of molecules. A protein called occludin helps fulfill this essential role.

“It’s a highly regulatable process that allows some molecules to go through and others to remain in circulation,” said Yulia Komarova, UIC associate professor in the department of pharmacology and at the College of Medicine and senior author of the study. “Basically, it’s a mechanism that separates the central nervous system from everything else.”

Unexpected Resonances Could Boost NMR’s Potency

A radio-frequency field can be resonant with nuclear spins in a sample even if its frequency does not match a spectroscopic transition—a result that could enable new forms of NMR spectroscopy.

Physical systems often have characteristic frequencies. When excited at such a frequency, they start to resonate. The Broughton Suspension Bridge incident on April 12, 1831, showed how this can go wrong. A detachment of 74 riflemen marched in step over the bridge, accidentally matching its resonance frequency. Before they had crossed, the bridge collapsed. At the much-smaller scale of nuclear magnetic resonance (NMR) spectroscopy, resonant excitation is less dramatic yet very useful. Typically, NMR relies on secular resonance, which occurs when the energy of the radio-frequency photons used in a measurement matches the energy required for flipping the magnetic moment of a nucleus in a static magnetic field. This secular resonance occurs at the so-called Larmor frequency. Structure determination of chemical compounds, experimental observation of protein dynamics, and magnetic resonance imaging rely on this matching.

Microscopic imaging reveals how electric double layers form at battery nucleation sites

Electrochemical cells—or batteries, as a well-known example—are complex technologies that combine chemistry, physics, materials science and electronics. More than power sources for everything from smartphones to electric vehicles, they remain a strong motivation for scientific inquiry that seeks to fully understand their structure and evolution at the molecular level.

A team led by Yingjie Zhang, a professor of and engineering in The Grainger College of Engineering at the University of Illinois Urbana-Champaign, has completed the first investigation into a widely acknowledged but often overlooked aspect of : the nonuniformity of the liquid at the solid-liquid interfaces in the cells.

As the researchers report in the Proceedings of the National Academy of Sciences, microscopic imaging revealed that these interfacial structures, called electrical double layers (EDLs), tend to organize into specific configurations in response to chemical deposition on the of the solid. The paper is titled “Nucleation at solid–liquid interfaces is accompanied by the reconfiguration of electrical double layers.”

Programmable 2D nanochannels achieve brain-like memory

Researchers at The University of Manchester’s National Graphene Institute have developed a new class of programmable nanofluidic memristors that mimic the memory functions of the human brain, paving the way for next-generation neuromorphic computing.

In a study published in Nature Communications, scientists from the National Graphene Institute, Photon Science Institute and the Department of Physics and Astronomy have demonstrated how two-dimensional (2D) nanochannels can be tuned to exhibit all four theoretically predicted types of memristive behavior, something never before achieved in a single device.

This study not only reveals new insights into ionic mechanisms but also has the potential to enable emerging applications in ionic logic, neuromorphic components, and adaptive chemical sensing.

The First Molecules In The Universe Reveal Surprises After Being Bombarded With Deuterium

In new experiments, the team attempted to recreate the conditions of the early universe, and test whether HeH+ could provide the cooling needed to form the universe’s first stars. The team bombarded the molecule with deuterium at varying temperatures, simulated by varying the relative speed of the beams of particles. To their surprise, and contrary to previous predictions, the reaction rate did not slow as temperatures significantly decreased.

“Previous theories predicted a significant decrease in the reaction probability at low temperatures, but we were unable to verify this in either the experiment or new theoretical calculations by our colleagues,” Dr Holger Kreckel from the Max-Planck-Institut für Kernphysik (MPIK) explained in a statement. “The reactions of HeH⁺ with neutral hydrogen and deuterium therefore appear to have been far more important for chemistry in the early universe than previously assumed.”

These results could have profound implications for our understanding of the early universe, and may even force a bit of reevaluation.

/* */