Menu

Blog

Archive for the ‘biotech/medical’ category: Page 831

Jun 8, 2022

Lab-grown mini-brains could help find treatments for Alzheimer’s and other diseases

Posted by in categories: biotech/medical, neuroscience

To assess whether a compound holds promise for treating a disease, researchers usually begin by studying its use in animals. This allows us to see if the compound has a chance of curing the disease.

Animal models, however, rarely reproduce all aspects of a disease. The alternative is to represent the disease in cell cultures. While at first glance, Petri dishes look quite different from a person with a disease, the reality could be quite different when you look at them more closely.

Alzheimer’s has been cured more than 400 times in laboratories. How then can we still consider Alzheimer’s to be incurable? The reason is that it has only been cured in animals.

Jun 8, 2022

Doctors are left stunned after cancer ‘disappears’ for EVERY patient in drug trial — raising hopes treatment is ’tip of the iceberg‘ and can be used to help people fighting other forms of the disease

Posted by in category: biotech/medical

A new colorectal cancer drug has shocked researchers with how effective it is against the highly dangerous disease, after it virtually cured every member of a clinical trial.

Dostarlimab, a monoclonal antibody drug that is already approved to treat endometrial cancer in the UK, smashed expectations in a trial at Memorial Sloan Kettering Cancer Center in New York.

One year after the trial ended, each of the 18 participants’ cancer had gone into remission, with doctors unable to find signs of the cancer in their body.

Jun 8, 2022

Rectal Cancer Disappears After Experimental Use of Immunotherapy

Posted by in category: biotech/medical

Sascha Roth remembers the phone call came on a hectic Friday evening.

She was racing around her home in Washington, D.C., to pack for New York, where she was scheduled to undergo weeks of radiation therapy for rectal cancer. But the phone call from Memorial Sloan Kettering Cancer Center (MSK) medical oncologist Andrea Cercek changed everything, leaving Sascha “stunned and ecstatic — I was so happy.”

Continue reading “Rectal Cancer Disappears After Experimental Use of Immunotherapy” »

Jun 8, 2022

A breakthrough drug trial astonished doctors

Posted by in categories: biotech/medical, innovation

Jun 8, 2022

Cellular secrets unlocked by researchers lead to new theory for aging

Posted by in categories: biotech/medical, genetics, life extension

New research has uncovered how genetic changes that accumulate slowly in blood stem cells throughout life are likely to be responsible for the dramatic change in blood production after the age of 70.

The study, by scientists at the Wellcome Sanger Institute, the Wellcome-MRC Cambridge Stem Cell Institute and collaborators, has been published in the journal Nature.

Longevity. Technology: Has our understanding of one of the mechanisms of aging taken a quantum leap? Molecular damage accumulates throughout our lives, gradually increasing year-on-year as we suffer telomere attrition, mutation, epigenetic change and oxidative and replicative stress. It’s a double whammy as our ability to repair this damage also declines as we age, but given the gradual nature of these processes, why, as the paper authors themselves put it, “Is there an abrupt increase in mortality after 70 years of age? [1].

Jun 8, 2022

New CRISPR Tool Protects Against Viruses Without Making Any DNA Cuts

Posted by in category: biotech/medical

A study published last week in Molecular Cell took a step towards that radical new concept for CRISPR. Led by Dr. Jennifer Doudna at the University of California Berkeley, who shared a Nobel Prize as a pioneer in the field, the study honed in on Cas9’s less famous and far more enigmatic cousin, Cas12c.

It’s the black sheep of the Cas family. Unlike other members, Cas12c completely lacks the ability to cut DNA. Instead, in bacteria cells, it binds onto invading viruses and protects vulnerable cells without shredding the virus’s DNA. The end result is a powerful antiviral defense system that doesn’t tax the host cell’s inner workings—yet makes it invincible to certain viral infections.

The study shows that chopping up viral DNA isn’t the only route for antiviral defense, at least in bacteria cells, the authors said. But more importantly, we’ve only begun scratching the surface of CRISPR gene editors.

Jun 7, 2022

Researchers use nanotechnology to destroy and prevent relapse of solid tumor cancers

Posted by in categories: biotech/medical, life extension, nanotechnology

As people across the globe look forward to longer life expectancies, malignant cancers continue to pose threats to human health. The exploration and development of immunotherapy aims to seek new breakthroughs for the treatment of solid tumors.

The successful establishment of anti-tumor immunity requires the activation, expansion and differentiation of antigen-specific lymphocytes. This process largely depends on specific interactions between various T cells and antigen-presenting cells (APCs) in the body. However, existing tumor vaccines, such as neoantigen vaccines and various vector vaccines, all rely on random interactions with APCs in the body. Furthermore, inappropriate interactions may lead to the silencing of other immune responses.

Although immune checkpoint-based immunotherapy has been shown to have great potential, only a small proportion of patients fully respond to this therapy, and the relevant molecular mechanisms need to be further explored. This delivery method is however complex and inefficient.

Jun 7, 2022

PD-1 Blockade in Mismatch Repair–Deficient, Locally Advanced Rectal Cancer

Posted by in category: biotech/medical

Neoadjuvant chemotherapy and radiation followed by surgical resection of the rectum is a standard treatment for locally advanced rectal cancer. A subset of rectal cancer is caused by a deficiency in mismatch repair. Because mismatch repair–deficient colorectal cancer is responsive to programmed death 1 (PD-1) blockade in the context of metastatic disease, it was hypothesized that checkpoint blockade could be effective in patients with mismatch repair–deficient, locally advanced rectal cancer.

We initiated a prospective phase 2 study in which single-agent dostarlimab, an anti–PD-1 monoclonal antibody, was administered every 3 weeks for 6 months in patients with mismatch repair–deficient stage II or III rectal adenocarcinoma. This treatment was to be followed by standard chemoradiotherapy and surgery. Patients who had a clinical complete response after completion of dostarlimab therapy would proceed without chemoradiotherapy and surgery. The primary end points are sustained clinical complete response 12 months after completion of dostarlimab therapy or pathological complete response after completion of dostarlimab therapy with or without chemoradiotherapy and overall response to neoadjuvant dostarlimab therapy with or without chemoradiotherapy.

A total of 12 patients have completed treatment with dostarlimab and have undergone at least 6 months of follow-up. All 12 patients (100%; 95% confidence interval, 74 to 100) had a clinical complete response, with no evidence of tumor on magnetic resonance imaging, 18 F-fluorodeoxyglucose–positron-emission tomography, endoscopic evaluation, digital rectal examination, or biopsy. At the time of this report, no patients had received chemoradiotherapy or undergone surgery, and no cases of progression or recurrence had been reported during follow-up (range, 6 to 25 months). No adverse events of grade 3 or higher have been reported.

Jun 7, 2022

Ultima Genomics Claims the $100 Genome and Raises $600M to Go Even Lower

Posted by in category: biotech/medical

Ultima claims it can sequence a human genome for $100, and the startup’s founder and CEO says they can go even lower still.

Jun 7, 2022

A chip that can classify nearly 2 billion images per second

Posted by in categories: biotech/medical, mobile phones, robotics/AI

Artificial intelligence (AI) plays an important role in many systems, from predictive text to medical diagnoses. Inspired by the human brain, many AI systems are implemented based on artificial neural networks, where electrical equivalents of biological neurons are interconnected, trained with a set of known data, such as images, and then used to recognize or classify new data points.

In traditional neural networks used for , the image of the target object is first formed on an , such as the in a smart phone. Then, the image sensor converts light into , and ultimately into the , which can then be processed, analyzed, stored and classified using computer chips. Speeding up these abilities is key to improving any number of applications, such as face recognition, automatically detecting text in photos, or helping self-driving cars recognize obstacles.

While current, consumer-grade image classification technology on a digital chip can perform billions of computations per second, making it fast enough for most applications, more sophisticated image classification such as identifying moving objects, 3D object identification, or classification of microscopic cells in the body, are pushing the computational limits of even the most powerful technology. The current speed limit of these technologies is set by the clock-based schedule of computation steps in a computer processor, where computations occur one after another on a linear schedule.

Page 831 of 2,560First828829830831832833834835Last