Toggle light / dark theme

A platform developed nearly 20 years ago previously used to detect protein interactions with DNA and conduct accurate COVID-19 testing has been repurposed to create a highly sensitive water contamination detection tool.

The technology merges two exciting fields— and nanotechnology—to create a new platform for chemical monitoring. When tuned to detect different contaminants, the technology could detect the metals lead and cadmium at concentrations down to two and one parts per billion, respectively, in a matter of minutes.

The paper was published this week in the journal ACS Nano and represents research from multiple disciplines within Northwestern’s McCormick School of Engineering.

Nanozymes are synthetic materials that have enzyme-like catalytic properties, and they are broadly used for biomedical purposes, such as disease diagnostics. However, inorganic nanozymes are generally toxic, expensive, and complicated to produce, making them unsuitable for the agricultural and food industries.

A University of Illinois Urbana-Champaign research team has developed organic-material-based nanozymes that are non-toxic, environmentally friendly, and cost-effective. In two new studies, they introduce next-generation organic nanozymes and explore a point-of-use platform for molecule detection in .

“The first generation of organic-compound-based (OC) nanozymes had some minor drawbacks, so our research group worked to make improvements. The previous OC nanozymes required the use of particle stabilizing polymers having repeatable functional groups, which assured stability of the nanozyme’s nanoscale framework, but didn’t achieve a sufficiently small particle size,” said lead author Dong Hoon Lee, who completed his Ph.D. from the Department of Agricultural and Biological Engineering (ABE), part of the College of Agricultural, Consumer and Environmental Sciences and The Grainger College of Engineering at the U. of I.

A study led by UMass Chan Medical School researchers has demonstrated that a gene therapy to correct a mutation that causes maple syrup urine disease (MSUD) prevented newborn death, normalized growth, restored coordinated expression of the affected genes and stabilized biomarkers in a calf as well as in mice.

“Simply put, we believe the demonstrated in both animal species, especially in the cow, very well showcases the therapeutic potential for MSUD, in part because the diseased cow, without treatment, has a very similar metabolic profile as the patients,” said Dan Wang, Ph.D., assistant professor of genetic & cellular medicine.

Dr. Wang is co-principal investigator with Heather Gray-Edwards, DVM, Ph.D., assistant professor of genetic & cellular medicine; Guangping Gao, Ph.D., the Penelope Booth Rockwell Chair in Biomedical Research, director of the Horae Gene Therapy Center, director of the Li Weibo Institute for Rare Diseases Research and chair and professor of genetic & cellular medicine; and Kevin Strauss, MD, adjunct professor of pediatrics and head of therapeutic development at the Clinic for Special Children in Gordonville, Pennsylvania.

Raw milk has made headlines recently for widespread samples containing the virus that causes H5N1, or bird flu, with the U.S. Department of Agriculture launching a program in December to track the virus through milk testing. But bird flu is far from the only disease-causing pathogen lurking in raw milk: Unpasteurized milk can contain bacteria such as E. coli and Listeria, for instance.

New Stanford Medicine research has found that another virus affecting both animals and people — Rift Valley fever virus — can remain active in raw milk samples for roughly as long as someone might want to drink it. Rift Valley fever is an acute viral illness spread to people through mosquitoes or the bodily fluids of infected animals. These findings mirror recent Stanford research showing that flu virus can be infectious in refrigerated raw milk for up to five days.

While Rift Valley fever virus mostly impacts sub-Saharan Africa, these findings have important implications for understanding human disease risk from drinking raw milk, said Brian Dawes, MD, PhD. He is an infectious disease fellow and postdoctoral researcher in Stanford Medicine’s LaBeaud Lab and led the research. Desiree LaBeaud, MD, associate dean of global health, was the senior author. Alina De La Mota-Peynado of the USDA was co-lead author.

Mayo Clinic researchers have discovered a new role that a specific protein plays in regulating cell resistance and fighting tumors in certain types of cancer, offering hope for improved cancer therapies and patient outcomes.

The protein, known as NKG7, is found in CD8+ T cells, a type of immune cell that can recognize and kill cancer cells. CD8+ T cell resilience is essential for anti-tumor activity. The protein allows CD8+ T cells to continue killing cancer cells even under stress and can help prevent cancer from growing and spreading.

“We found that patients with invasive bladder cancer who had NKG7-expressing CD8+ T cells within their tumor had superior survival compared to patients without,” says Dan Billadeau, Ph.D., senior author of the study, detailed in Nature Communications. “This discovery holds promise for manipulating CD8+ T cells — for example, CAR-T and tumor-infiltrating lymphocytes (TILs) — to combat cancer.”

A rare genetic disease that ravages some but spares others has baffled researchers — until now.

Researchers found that a genetic variant, HAQ-STING, acts as a shield against COPA Syndrome, a discovery that could lead to life-changing gene therapies. For families long plagued by the disease, the revelation was both an explanation and a beacon of hope.

A breakthrough in understanding COPA syndrome.

Lessening the severity and impact of influenza — dr. gregg C sylvester, MD — chief health officer, CSL seqirus.


Dr. Gregg Sylvester, MD is Chief Health Officer and Vice President, Medical Affairs, at CSL Seqirus (https://www.cslseqirus.us/our-company/leadership/gregg–… one of the world’s largest influenza vaccine companies.

Dr. Sylvester has led CSL Seqirus Medical Affairs since 2016, overseeing the global team that scientifically differentiates company’s vaccines by generating Real World Evidence and presenting CSL Seqirus research to national vaccine recommending organizations.

A new algorithm, Evo 2, trained on roughly 128,000 genomes—9.3 trillion DNA letter pairs—spanning all of life’s domains, is now the largest generative AI model for biology to date. Built by scientists at the Arc Institute, Stanford University, and Nvidia, Evo 2 can write whole chromosomes and small genomes from scratch.

It also learned how DNA mutations affect proteins, RNA, and overall health, shining light on “non-coding” regions, in particular. These mysterious sections of DNA don’t make proteins but often control gene activity and are linked to diseases.

The team has released Evo 2’s software code and model parameters to the scientific community for further exploration. Researchers can also access the tool through a user-friendly web interface. With Evo 2 as a foundation, scientists may develop more specific AI models. These could predict how mutations affect a protein’s function, how genes operate differently across cell types, or even help researchers design new genomes for synthetic biology.

Researchers from the University of California, Santa Barbara (UCSB) designed a “material-like” collective of programmable micro-robots, which can behave like a fluid or bond together to create new solid structures. The technology could lead to the development of a new sub-field of robotics.

The UCSB scientists set out to design simple robots that could work together, like a colony of ants or other collective groups. The study, recently published in Science, describes micro-robotic units that can switch from a “fluidizing” state to a more “solid” shape based on the rotational state of the robots.

The idea is ripped straight from science fiction concepts like the T-1000 from Terminator 2: Judgement Day. The researchers claim they have turned this theoretical vision into reality after studying embryonic morphogenesis, the biological process through which cells can change their shapes and turn into different tissues in the human body.

Michael Le Page explains how this “multi-region brain organoid” contains 80 per cent of the cell types found in a 40-day-old fetal brain.

The team behind it aims to study conditions like autism and schizophrenia — with some suggesting they could one day be used in artificial intelligence. But this all throws up major ethical issues…

Hear the full story on New Scientist Weekly, a news podcast for the insatiably curious, hosted by Rowan Hooper and Penny Sarchet.