Menu

Blog

Archive for the ‘biotech/medical’ category: Page 7

Jun 26, 2024

Neuralink’s first human patient Noland Arbaugh says his brain chip can be hacked: ‘It is what it is’

Posted by in categories: biotech/medical, cybercrime/malcode, neuroscience

Hacking my brain implant wouldn’t do much, he asserted, adding, “You might be able to see like some of the brain signals. You might be able to see some of the data that Neuralink’s collecting.”

Get ready to catch the final stages of the World Cup only on Crickit. Anytime, Anywhere. Explore now!

Norland Arbaugh did not specify the data that is being collected by Neuralink chip which is almost the size of a coin and contains thousands of electrodes that monitor and stimulate brain activity, as per the company. This information is digitally transmitted to researchers.

Jun 26, 2024

Structural mechanism of bridge RNA-guided recombination

Posted by in category: biotech/medical

Using cryo-electron microscopy, the structural mechanism by which non-coding bridge RNA confers target and donor DNA specificity to IS110 recombinases for programmable DNA recombination is explored.

Jun 26, 2024

Bridging Brain Circuits with Lab-Grown Neural Networks

Posted by in categories: biotech/medical, robotics/AI

Summary: Researchers successfully connected lab-grown brain tissues, mimicking the complex networks found in the human brain. This novel method involves linking “neural organoids” with axonal bundles, enabling the study of interregional brain connections and their role in human cognitive functions.

The connected organoids exhibited more sophisticated activity patterns, demonstrating both the generation and synchronization of electrical activity akin to natural brain functions. This breakthrough not only enhances our understanding of brain network development and plasticity but also opens new avenues for researching neurological and psychiatric disorders, offering hope for more effective treatments.

Jun 26, 2024

Brain in a dish — the potential of organoid intelligence and biological computing

Posted by in categories: biotech/medical, neuroscience, robotics/AI

In February 2023, Frontiers in Science published an article titled “Organoid Intelligence (OI): The New Frontier in Biocomputing and Intelligence-in-a-Dish.” Since its publication, this research has sparked significant scientific interest and gained coverage in Forbes, Financial Times, Wall Street Journal, BBC, CNN and many others.

So, what is organoid intelligence and why has this article gathered such attention?

Continue reading “Brain in a dish — the potential of organoid intelligence and biological computing” »

Jun 26, 2024

Revealing the dynamic choreography inside multilayer vesicles

Posted by in categories: biotech/medical, food

Our cells and the machinery inside them are engaged in a constant dance. This dance involves some surprisingly complicated choreography within the lipid bilayers that comprise cell membranes and vesicles — structures that transport waste or food within cells.

In a recent ACS Nano paper (“The Secret Ballet Inside Multivesicular Bodies”), Luis Mayorga and Diego Masone shed some light on how these vesicles self-assemble, knowledge that could help scientists design bio-inspired vesicles for drug-delivery or inspire them to create life-like synthetic materials.

A representation of multilayer lipid vesicles inspired by “Color Study: Squares with Concentric Circles,” by the artist Wassily Kandinsky. (Image: ACS Nano 2024, DOI: 10.1021/acsnano.4c01590)

Jun 26, 2024

The brain makes a lot of waste. Now scientists think they know where it goes

Posted by in categories: biotech/medical, neuroscience

About 170 billion cells are in the brain, and as they go about their regular tasks, they produce waste — a lot of it.


The brain appears to rely on synchronized waves to wash out waste products, including toxins associated with Alzheimer’s disease.

Jun 26, 2024

Nf1 gene mutations disrupt brain cell plasticity and motor learning in mice

Posted by in categories: biotech/medical, genetics, neuroscience

Neurogenetic disorders, such as neurofibromatosis type 1 (NF1), are diseases caused by a defect in one or more genes, which can sometimes result in cognitive and motor impairments. Better understanding the neural underpinning of these disorders and how they affect motor and cognitive abilities could contribute to the development of new treatment strategies.

Researchers at Stanford University and Washington University School of Medicine recently performed a study on mice aimed at investigating the impact of Nf1 gene mutations, which cause the NF1 neurogenetic disorder, on oligodendroglial plasticity, an adaptive brain process known to contribute to cognitive and motor functions.

Their findings, published in Nature Neuroscience, provide strong evidence that Nf1 mutations delay the development of oligodendroglia, a type of glial cells that support the functioning of the central nervous system, causing disruptions in motor learning.

Jun 26, 2024

Immunotherapy Significantly Increases the Number of Patients Free from Bowel Cancer: Clinical trial

Posted by in categories: biotech/medical, genetics

An immunotherapy drug given before surgery instead of chemotherapy meant that over ten times more patients with a certain genetic profile were cancer-free after surgery, according to clinical trial results presented by researchers at UCL and UCLH.

The findings, presented at the American Society of Clinical Oncology (ASCO) Annual Meeting 2024, are interim results from the NEOPRISM-CRC phase II clinical trial assessing whether the immunotherapy drug pembrolizumab can improve outcomes for patients with stage two or stage three MMR deficient/MSI-High bowel cancer. The trial was a collaboration among UCL, UCLH, the Christie NHS Foundation Trust in Manchester, St. James’s University Hospital in Leeds, University Hospital Southampton and the University of Glasgow.

Bowel cancer is the fourth most common cancer in the UK, with around 42,900 cases a year. Though still predominantly a cancer that affects older people, cases among the under 50s have been increasing in recent decades.

Jun 26, 2024

Superlow Power Consumption Memristor Based on Borphyrin-Deoxyribonucleic Acid Composite Films as Artificial Synapse for Neuromorphic Computing

Posted by in categories: biotech/medical, chemistry, robotics/AI

Memristor synapses based on green and pollution-free organic materials are expected to facilitate biorealistic neuromorphic computing and to be an important step toward the next generation of green electronics. Metalloporphyrin is an organic compound that widely exists in nature with good biocompatibility and stable chemical properties, and has already been used to fabricate memristors. However, the application of metalloporphyrin-based memristors as synaptic devices still faces challenges, such as realizing a high switching ratio, low power consumption, and bidirectional conductance modulation. We developed a memristor that improves the resistive switching (RS) characteristics of Zn(II)meso-tetra(4-carboxyphenyl) porphine (ZnTCPP) by combining it with deoxyribonucleic acid (DNA) in a composite film. The as-fabricated ZnTCPP-DNA-based device showed excellent RS memory characteristics with a sufficiently high switching ratio of up to ∼104, super low power consumption of ∼39.56 nW, good cycling stability, and data retention capability. Moreover, bidirectional conductance modulation of the ZnTCPP-DNA-based device can be controlled by modulating the amplitudes, durations, and intervals of positive and negative pulses. The ZnTCPP-DNA-based device was used to successfully simulate a series of synaptic functions including long-term potentiation, long-term depression, spike time-dependent plasticity, paired-pulse facilitation, excitatory postsynaptic current, and human learning behavior, which demonstrates its potential applicability to neuromorphic devices. A two-layer artificial neural network was used to demonstrate the digit recognition ability of the ZnTCPP-DNA-based device, which reached 97.22% after 100 training iterations. These results create a new avenue for the research and development of green electronics and have major implications for green low-power neuromorphic computing in the future.

Keywords: artificial synapses; memristors; neuromorphic computing; porphyrin−DNA composite films; superlow power consumption.

PubMed Disclaimer

Jun 25, 2024

ESM3: Simulating 500 million years of evolution with a language model

Posted by in categories: bioengineering, biotech/medical, chemistry, computing, health

More than 3.5 billion years ago, life on Earth emerged from chemical reactions. Nature invented RNA, proteins, and DNA, the core molecules of life, and created the ribosome, a molecular factory that builds proteins from instructions in the genome.

Proteins are wondrous dynamic molecules with incredible functions—from molecular engines that power motion, to photosynthetic machines that capture light and convert it to energy, scaffolding that builds the internal skeletons of cells, complex sensors that interact with the environment, and information processing systems that run the programs and operating system of life. Proteins underlie disease and health, and many life-saving medicines are proteins.

Biology is the most advanced technology that has ever been created, far beyond anything that people have engineered. The ribosome is programmable—it takes the codes of proteins in the form of RNA and builds them up from scratch—fabrication at the atomic scale. Every cell in every organism on earth has thousands to millions of these molecular factories. But even the most sophisticated computational tools created to date barely scratch the surface: biology is written in a language we don’t yet understand.

Page 7 of 2,628First4567891011Last