Toggle light / dark theme

Precise tissue deformation measurement technique promises better-fitting sportswear and medical apparel

Soft tissue deformation during body movement has long posed a challenge to achieving optimal garment fit and comfort, particularly in sportswear and functional medical wear.

Researchers at The Hong Kong Polytechnic University (PolyU) have developed a novel anthropometric method that delivers highly to enhance the performance and design of compression-based apparel.

Prof. Joanne YIP, Associate Dean and Professor of the School of Fashion and Textiles at PolyU, and her research team pioneered this anthropometric method using image recognition algorithms to systematically access tissue deformation while minimizing motion-related errors.

Pancreatic insulin disruption triggers bipolar disorder-like behaviors in mice, study shows

Bipolar disorder is a psychiatric disorder characterized by alternating episodes of depression (i.e., low mood and a loss of interest in everyday activities) and mania (i.e., a state in which arousal and energy levels are abnormally high). On average, an estimated 1–2% of people worldwide are diagnosed with bipolar disorder at some point during their lives.

Bipolar disorder can be highly debilitating, particularly if left untreated. Understanding the neural and physiological processes that contribute to its emergence could thus be very valuable, as it could inform the development of new prevention and treatment strategies.

In addition to experiencing periodic changes in mood, individuals diagnosed with this disorder often exhibit some metabolic symptoms, including changes in their blood sugar levels. While some previous studies reported an association between blood sugar control mechanisms and bipolar disorder, the biological link between the two has not yet been uncovered.

Why Do We Need Sleep? Oxford Scientists Trace the Answer to Mitochondria

Sleep may serve as more than rest for the mind; it may also function as essential upkeep for the body’s energy systems. A new study from University of Oxford researchers, published in Nature, shows that the drive to sleep is caused by electrical stress building up in the tiny energy-producing structures of brain cells.

This finding provides a concrete physical explanation for the biological need for sleep and has the potential to reshape scientific thinking about sleep, aging, and neurological disorders.

Puzzle-solving chemist helps boost synthesis of key bioactive compounds

A new approach to an established reaction boosts the ability to synthesize vinylic ethers—key building blocks for many molecules important to human health. The journal Organic Letters published the breakthrough, made by chemists at Emory University.

“Our method is easy to reproduce and is based on widely available and inexpensive compounds,” says San Pham, an Emory Ph.D. candidate and first author of the paper. “We can apply this method to make multiple natural products, including novel vinylic ethers.”

Her research improves the reliability, yield and generality of what is known as the Chan-Evans-Lam reaction. These enhancements greatly expand the reaction’s potential for the synthesis of complex, biologically active compounds for drug research.

Switching Off One Crucial Protein Appears to Reverse Brain Aging in Mice

A protein called ferritin light chain 1 (FTL1) may play a significant role in brain aging, a new study reveals, giving scientists a new target for understanding and potentially preventing brain deterioration and disease.

FTL1 was brought to light through a careful comparison of the hippocampus part of the brain in mice of different ages. The hippocampus is involved in memory and learning, and it is one of the regions that suffers most from age-related decline.

The study team found that FLT1 was the one protein in this region that old mice had more of and young mice had less of.

Brain cancer cells can be ‘reprogrammed’ to stop them from spreading

Scientists have found a way to stop brain cancer cells spreading by essentially ‘freezing’ a key molecule in the brain.

The finding could pave the way for a new type of treatment for , the most aggressive form of brain cancer, although extensive testing will be required before it can be trialed in patients. Glioblastoma is the most common type of brain cancer, with a five-year survival rate of just 15%.

The researchers, from the University of Cambridge, found that rely on the flexibility of (HA)—a sugar-like polymer that makes up much of the brain’s supporting structure—to latch onto receptors on the surface of cancer cells to trigger their spread throughout the brain.

Memory consolidation requires reactivation of only three neurons during sleep, research reveals

Researchers at Tsukuba University in Japan report that memories acquired while awake are stored in a more permanent form (called memory consolidation) during the REM stage of sleep, and that this process requires the reactivation of only a few specialized neurons involved in memory formation. They found that three of these neurons are crucial for memory consolidation during REM sleep.

The researchers focused on adult-born (ABNs) in the hippocampal region of the temporal lobe, which are rare neurons known to be essential for maintaining proper memory function as the loss of these cells is observed in Alzheimer’s disease. However, it has remained unclear why the loss of this small neuronal population has such devastating effects on memory.

In the Nature Communications study, specially genetically modified , in which the activity of ABNs could be monitored, were exposed to a fear experience, and the researchers examined if the activities of these ABNs during initial memory formation were reproduced during REM sleep, when dreaming is believed to occur.

Advanced model unlocks granular hydrogel mechanics for biomedical applications

Researchers at the University of Illinois Urbana-Champaign have developed a novel framework for understanding and controlling the flow behavior of granular hydrogels—a class of material made up of densely packed, microscopic gel particles with promising applications in medicine, 3D bioprinting, and tissue repair.

The new study, published in Advanced Materials, was led by chemical and biomolecular engineering professors Brendan A. Harley and Simon A. Rogers, whose research groups specialize in biomaterials engineering and rheology, respectively.

Granular hydrogels have a unique ability to mimic the of living tissue, which makes them ideal candidates for encapsulating and delivering cells directly into the body. By integrating material synthesis and characterization with rheological modeling, the researchers created a that captures the essential physics of how granular hydrogels deform—reducing a complex problem to a few controllable parameters.

/* */