Toggle light / dark theme

A recent study published in JAMA Oncology presents promising new data on a treatment regimen beneficial to patients with a subset of head and neck cancer known as oropharyngeal cancer. A rare malignancy that forms in the middle of the throat, oropharyngeal cancer can develop in the roof of the mouth, tonsils, the back of the throat, or the back of the tongue.

A history of human papillomavirus (HPV) presents a significant risk factor for developing oropharyngeal cancer, as about two-thirds of patients carry HPV DNA. Oncologists classify these cases as human papillomavirus−positive oropharyngeal cancer (HPV+ OPC). Compared to oropharyngeal cancers not associated with HPV, treatment regimens involving chemotherapy and radiation significantly prolong survival in HPV+ OPC. Despite the treatment efficacy associated with chemoradiotherapy, long-lasting toxicities associated with these treatments remain a clinical challenge.

In search of a treatment regimen that retains tumor control with limited side effects, a team of researchers from the University of Chicago designed a clinical trial to evaluate the response and toxicity associated with a treatment regimen involving chemotherapy and an immune checkpoint inhibitor (ICI), nivolumab. ICIs, the class of immunotherapies that block the interaction between proteins on immune cells that would dampen the immune response if engaged, have efficacy in treating several types of cancer, often with limited toxicity. In the current clinical trial, ICI and chemotherapy serve as a neoadjuvant, drugs given in hopes of shrinking a tumor prior to an additional treatment. Not all patients received the same treatment following the neoadjuvant administration of chemotherapy and ICI.

Wayne State University researchers are using photoacoustic imaging to observe brain activity and, in the process, discovering more about how it responds to different types of learning and experiences.

The team’s findings were recently published in the journal Photoacoustics.

The study, “Use of pattern recognition in to identify neuronal ensembles in the prefrontal cortex of rats undergoing conditioned fear learning,” stemmed from a project by Wayne State University School of Medicine alumnus, James Matchynski, M.D., Ph.D., and was led by School of Medicine faculty members Shane Perrine, Ph.D., associate professor of psychiatry and behavioral neurosciences, and Alana Conti, Ph.D., professor of psychiatry and and director of the Translational Neuroscience Program. The team collaborated with colleagues in the Department of Biomedical Engineering at the University of Illinois Chicago.

A Brazilian study published in Nutrients suggests that fish oil may help reduce insulin resistance and improve glucose tolerance by influencing the body’s inflammatory response.

Funded by FAPESP, the study was conducted on rats that, while not obese, exhibited a condition resembling type 2 diabetes—a disorder marked by high blood sugar levels due to diminished insulin effectiveness.

As the authors explain, supplementation with omega-3 fatty acids such as those present in fish oil has been prescribed for individuals with cardiovascular problems and type 2 diabetes, but the effects of these nutrients on insulin resistance without obesity are poorly understood.


Fish oil supplementation modified the profile of defense cells, shifting them from a pro-inflammatory to an anti-inflammatory state, effectively reversing a condition resembling type 2 diabetes.

A Brazilian study published in Nutrients suggests that fish oil may help reduce insulin.

Insulin is a hormone produced by the pancreas, crucial for regulating blood glucose levels. It helps cells in the body absorb glucose from the bloodstream and convert it into energy or store it for future use. Insulin production and action are essential for maintaining stable blood sugar levels. In people with diabetes, the body either does not produce enough insulin (Type 1 diabetes) or cannot effectively use the insulin it does produce (Type 2 diabetes), leading to elevated levels of glucose in the blood. This can cause various health complications over time, including heart disease, kidney damage, and nerve dysfunction. Insulin therapy, where insulin is administered through injections or an insulin pump, is a common treatment for managing diabetes, particularly Type 1. The discovery of insulin in 1921 by Frederick Banting and Charles Best was a landmark in medical science, transforming diabetes from a fatal disease to a manageable condition.

We all encounter gels in daily life – from the soft, sticky substances you put in your hair, to the jelly-like components in various foodstuffs. While human skin shares gel-like characteristics, it has unique qualities that are very hard to replicate. It combines high stiffness with flexibility, and it has remarkable self-healing capabilities, often healing completely within 24 hours after injury.

Until now, artificial gels have either managed to replicate this high stiffness or natural skin’s self-healing properties, but not both. Now, a team of researchers from Aalto University and the University of Bayreuth are the first to develop a hydrogel with a unique structure that overcomes earlier limitations, opening the door to applications such as drug delivery, wound healing, soft robotics sensors and artificial skin.

In the breakthrough study, the researchers added exceptionally large and ultra-thin specific clay nanosheets to hydrogels, which are typically soft and squishy. The result is a highly ordered structure with densely entangled polymers between nanosheets, not only improving the mechanical properties of the hydrogel but also allowing the material to self-heal.

Proteins are long molecules that must fold into complex three-dimensional structures to perform their cellular functions. This folding process occasionally goes awry, resulting in misfolded proteins that, if not corrected, can potentially lead to disease. Now, a new study has described a potential mechanism that could help explain why some proteins refold in a different pattern than expected.

The researchers, led by chemists at Penn State, found that a type of misfolding, in which the proteins incorrectly intertwine their segments, can occur and create a barrier to the normal folding process. Correcting this misfold requires high-energy or extensive unfolding, which slows the folding process, leading to the unexpected pattern first observed in the 1990s.

“Misfolded proteins can malfunction and lead to disease,” said Ed O’Brien, professor of chemistry in the Eberly College of Science, a co-hire of the Institute for Computational and Data Sciences at Penn State, and leader of the research team. “So, understanding the mechanisms involved in the folding process can potentially help researchers prevent or develop treatments for diseases caused by misfolding.”

Inside the human eye, the retina is made up of several types of cells, including the light-sensing photoreceptors that initiate the cascade of events that lead to vision. Damage to the photoreceptors, either through degenerative disease or injury, leads to permanent vision impairment or blindness.

David Gamm, director of UW–Madison’s McPherson Eye Research Institute and professor of ophthalmology and visual sciences, says that stem cell replacement therapy using lab-grown photoreceptors is a promising strategy to combat retinal disease. The challenge is that stem cell treatments aimed at replacing photoreceptors need to first be tested in animals. Since human cells are not compatible in other species and are quickly rejected when transplanted, it’s difficult to assess their potential.

Pig and human retinas share many key features, making pigs ideal for modeling human retinal disease and testing ocular therapeutics. By testing ‘human-equivalent’ photoreceptors in pigs, we can get a better sense of what these cells can do if they are not immediately attacked by the host animal.

Adding immunotherapy to a new type of inhibitor that targets multiple forms of the cancer-causing gene mutation KRAS kept pancreatic cancer at bay in preclinical models for significantly longer than the same targeted therapy by itself, according to researchers from the Perelman School of Medicine at the University of Pennsylvania and Penn Medicine’s Abramson Cancer Center. The results, published in Cancer Discovery, prime the combination strategy for future clinical trials.

Patients with pancreatic cancer have an overall poor prognosis: in most patients, the disease has already spread at the time of diagnosis, resulting in limited treatment options. Nearly 90 percent of pancreatic cancers are driven by KRAS mutations, the most common cancer-causing gene mutation across cancer types, which researchers long considered “undruggable.”

In 2021, the first KRAS inhibitor was approved to treat with KRAS G12C mutations, but with longer follow-up, it has become clear that KRAS-mutant cancers can quickly evolve to resist therapies targeted at one specific form of the gene mutation.

Researchers at the TechMed Center of the University of Twente and Radboud University Medical Center have removed blood clots with wireless magnetic robots. This innovation promises to transform treatment for life-threatening vascular conditions like thrombosis.

Cardiovascular diseases such as thrombosis are a major global health challenge. Each year worldwide, 1 in 4 people die from conditions caused by blood clots. A blood clot blocks a blood vessel, preventing the blood from delivering oxygen to certain areas of the body.

Minimally invasive Traditional treatments struggle with clots in hard-to-reach areas. But magnetic microrobots bring hope to patients with otherwise inoperable clots. The screw-shaped robots can navigate through intricate vascular networks since they are operated wirelessly.

In the spring of 2022, Tim Story’s doctor told him that he likely had just months to live. Story, a high school football coach in Hattiesburg, Mississippi, had been diagnosed with Stage 3 small bowel cancer two years earlier, at the age of 49, after mysterious pains in his side turned out to be a tumor in his small intestine. Surgery and several grueling rounds of chemotherapy and immunotherapy had failed to stop the cancer, which had spread to other organs.